4 A Comprehensive Overview of Mycolic Acid Structure and Biosynthesis

This chapter focuses on the major metabolic steps and essential enzymatic players in the mycolic acid biosynthetic pathway, providing a historical perspective and highlighting the key advances of the last few years in this dynamic area. Information relative to the mycolic acid structure has been brought through the application of early and modern chemical techniques, in particular thin-layer chromatography (TLC), gas chromatography (GC), high-pressure liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The structures of mycolic acids of genera other than mycobacteria were found to be relatively simple in terms of chemical functions, being composed only of homologous series with various numbers of double bonds, up to 7 for some Gordona species. The pathway for synthesis of mycolic acids could be virtually divided into three major steps: (1) the synthesis and elongation of fatty acids to give precursors of both the α-branch and the very long meromycolic chain; (2) the elongation and introduction of functional modifications on the meromycolic chain; and (3) the condensation of two long-chain fatty acids, followed by a reduction to yield the mycolic acid specific motif. More recently, the involvement of the AccD4 carboxyltransferase in mycolic acid synthesis and its essentiality for mycobacterial survival have been demonstrated. Fatty acid synthase (FAS)-II has been shown to elongate medium-chain-length C12 to C16 fatty acids to yield C18-C30 acyl-ACPs in vitro, which are most likely the precursors of the very long-chain meromycolic acids.

[1]  Investigating the Function of the Putative Mycolic Acid Methyltransferase UmaA , 2008, Journal of Biological Chemistry.

[2]  Paul Carroll,et al.  The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis , 2007, Proceedings of the National Academy of Sciences.

[3]  R. Coppel,et al.  The Reductase That Catalyzes Mycolic Motif Synthesis Is Required for Efficient Attachment of Mycolic Acids to Arabinogalactan* , 2007, Journal of Biological Chemistry.

[4]  G. Besra,et al.  Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice , 2007, Proceedings of the National Academy of Sciences.

[5]  T. Parish,et al.  Functional Complementation of the Essential Gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG but Not Escherichia coli fabG , 2007, Journal of bacteriology.

[6]  D. Zerbib,et al.  Rv3389C from Mycobacterium tuberculosis, a member of the (R)-specific hydratase/dehydratase family. , 2007, Biochimica et biophysica acta.

[7]  Chang-Muk Lee,et al.  AccD6, a Member of the Fas II Locus, Is a Functional Carboxyltransferase Subunit of the Acyl-Coenzyme A Carboxylase in Mycobacterium tuberculosis , 2006, Journal of bacteriology.

[8]  M. Wilmanns,et al.  Structural diversity in the six‐fold redundant set of acyl‐CoA carboxyltransferases in Mycobacterium tuberculosis , 2006, FEBS letters.

[9]  G. Besra,et al.  The Condensing Activities of the Mycobacterium tuberculosis Type II Fatty Acid Synthase Are Differentially Regulated by Phosphorylation* , 2006, Journal of Biological Chemistry.

[10]  C. Vilchèze,et al.  Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid , 2006, Nature Medicine.

[11]  M. Donald Cave,et al.  Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis , 2006, Antimicrobial Agents and Chemotherapy.

[12]  F. Gao,et al.  Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis -induced inflammation and virulence. , 2006, The Journal of clinical investigation.

[13]  C. Guilhot,et al.  The nonredundant roles of two 4'-phosphopantetheinyl transferases in vital processes of Mycobacteria. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  H. Shen,et al.  Characterization and site-directed mutagenesis of the putative novel acyl carrier protein Rv0033 and Rv1344 from Mycobacterium tuberculosis. , 2006, Biochemical and biophysical research communications.

[15]  Pierre Baldi,et al.  Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[16]  T. Sirakova,et al.  Identification and Characterization of Rv3281 as a Novel Subunit of a Biotin-dependent Acyl-CoA Carboxylase in Mycobacterium tuberculosis H37Rv* , 2006, Journal of Biological Chemistry.

[17]  L. Mourey,et al.  Further Insight into S-Adenosylmethionine-dependent Methyltransferases , 2006, Journal of Biological Chemistry.

[18]  J. Ge,et al.  Purification and characterization of the Mycobacterium tuberculosis FabD2, a novel malonyl-CoA:AcpM transacylase of fatty acid synthase. , 2006, Protein expression and purification.

[19]  D. Kurth,et al.  Biochemical and Structural Characterization of an Essential Acyl Coenzyme A Carboxylase from Mycobacterium tuberculosis , 2006, Journal of bacteriology.

[20]  K. Takayama,et al.  Isolation and characterization of the monounsaturated long chain fatty acids ofMycobacterium tuberculosis , 1978, Lipids.

[21]  Scott J Geromanos,et al.  Quantitative proteomic analysis of drug-induced changes in mycobacteria. , 2006, Journal of proteome research.

[22]  L. Kremer,et al.  Conditional Depletion of KasA, a Key Enzyme of Mycolic Acid Biosynthesis, Leads to Mycobacterial Cell Lysis , 2005, Journal of bacteriology.

[23]  D. Schomburg,et al.  The Crucial Role of Trehalose and Structurally Related Oligosaccharides in the Biosynthesis and Transfer of Mycolic Acids in Corynebacterineae* , 2005, Journal of Biological Chemistry.

[24]  G. Besra,et al.  Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. , 2005, Microbiology.

[25]  T. Unge,et al.  Rv0216, a conserved hypothetical protein from Mycobacterium tuberculosis that is essential for bacterial survival during infection, has a double hotdog fold , 2005, Protein science : a publication of the Protein Society.

[26]  L. Tong,et al.  Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery , 2005, Cellular and Molecular Life Sciences CMLS.

[27]  M. Daffé The Cell Envelope of Corynebacteria , 2005 .

[28]  M. Daffé,et al.  The Acyl-AMP Ligase FadD32 and AccD4-containing Acyl-CoA Carboxylase Are Required for the Synthesis of Mycolic Acids and Essential for Mycobacterial Growth , 2005, Journal of Biological Chemistry.

[29]  M. Glickman,et al.  Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule , 2005, The Journal of experimental medicine.

[30]  G. Besra,et al.  Pathway to Synthesis and Processing of Mycolic Acids in Mycobacterium tuberculosis , 2005, Clinical Microbiology Reviews.

[31]  L. Mourey,et al.  Protein–protein interactions within the Fatty Acid Synthase‐II system of Mycobacterium tuberculosis are essential for mycobacterial viability , 2004, Molecular microbiology.

[32]  G. Besra,et al.  Acyl-CoA Carboxylases (accD2 and accD3), Together with a Unique Polyketide Synthase (Cg-pks), Are Key to Mycolic Acid Biosynthesis in Corynebacterianeae Such as Corynebacterium glutamicum and Mycobacterium tuberculosis* , 2004, Journal of Biological Chemistry.

[33]  C. Khosla,et al.  Crystal structure of the beta-subunit of acyl-CoA carboxylase: structure-based engineering of substrate specificity. , 2004, Biochemistry.

[34]  T. Myers,et al.  The Transcriptional Responses of Mycobacterium tuberculosis to Inhibitors of Metabolism , 2004, Journal of Biological Chemistry.

[35]  K. Autio,et al.  Htd2p/Yhr067p is a yeast 3‐hydroxyacyl‐ACP dehydratase essential for mitochondrial function and morphology , 2004, Molecular microbiology.

[36]  Rajesh S. Gokhale,et al.  Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria , 2004, Nature.

[37]  J. Cronan,et al.  Isolation and Characterization of β-Ketoacyl-Acyl Carrier Protein Reductase (fabG) Mutants of Escherichia coli and Salmonella enterica Serovar Typhimurium , 2004 .

[38]  D. Janssen,et al.  The Prodrug Activator EtaA from Mycobacterium tuberculosis Is a Baeyer-Villiger Monooxygenase* , 2004, Journal of Biological Chemistry.

[39]  G. Labesse,et al.  In Vitro Inhibition of the Mycobacterium tuberculosis β-Ketoacyl-Acyl Carrier Protein Reductase MabA by Isoniazid , 2004, Antimicrobial Agents and Chemotherapy.

[40]  I. Yano,et al.  Isonicotinic acid hydrazide induced changes and inhibition in mycolic acid synthesis in Nocardia and related taxa , 1984, Archives of Microbiology.

[41]  P. Gounon,et al.  Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. , 2004, Microbiology.

[42]  C. Grimaldi,et al.  A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Gurdyal S Besra,et al.  Unique Mechanism of Action of the Thiourea Drug Isoxyl on Mycobacterium tuberculosis* , 2003, Journal of Biological Chemistry.

[44]  J. Cronan,et al.  β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) Is Essential for Bacterial Fatty Acid Synthesis* , 2003, Journal of Biological Chemistry.

[45]  Christopher M. Sassetti,et al.  Genetic requirements for mycobacterial survival during infection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  E. Brown,et al.  Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy , 2003, Molecular microbiology.

[47]  M. Daffé,et al.  New insights into the biogenesis of the cell envelope of corynebacteria: identification and functional characterization of five new mycoloyltransferase genes in Corynebacterium glutamicum. , 2003, FEMS microbiology letters.

[48]  J. Kalinowski,et al.  Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope , 2003, Archives of Microbiology.

[49]  E. Rubin,et al.  Genes required for mycobacterial growth defined by high density mutagenesis , 2003, Molecular microbiology.

[50]  M. Glickman,et al.  The mmaA2 Gene of Mycobacterium tuberculosis Encodes the Distal Cyclopropane Synthase of the α-Mycolic Acid* , 2003, The Journal of Biological Chemistry.

[51]  A. Lemassu,et al.  Tracking the Putative Biosynthetic Precursors of Oxygenated Mycolates of Mycobacterium tuberculosis , 2003, The Journal of Biological Chemistry.

[52]  C. Rock,et al.  The application of computational methods to explore the diversity and structure of bacterial fatty acid synthase Published, JLR Papers in Press, November 4, 2002. DOI 10.1194/jlr.R200016-JLR200 , 2003, Journal of Lipid Research.

[53]  Charles O. Rock,et al.  A New Mechanism for Anaerobic Unsaturated Fatty Acid Formation inStreptococcus pneumoniae * , 2002, The Journal of Biological Chemistry.

[54]  M. Lanéelle,et al.  The biosynthesis of mycolic acids by Mycobacteria: current and alternative hypotheses. , 2002, Progress in lipid research.

[55]  C. Rock,et al.  Mechanistic diversity and regulation of Type II fatty acid synthesis. , 2002, Biochemical Society transactions.

[56]  Grover L Waldrop,et al.  Multi-subunit acetyl-CoA carboxylases. , 2002, Progress in lipid research.

[57]  C. Khosla,et al.  Kinetic and Structural Analysis of a New Group of Acyl-CoA Carboxylases Found in Streptomyces coelicolor A3(2)* , 2002, The Journal of Biological Chemistry.

[58]  C. E. Barry,et al.  The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. , 2002, Tuberculosis.

[59]  G. Labesse,et al.  Crystal structure of MabA from Mycobacterium tuberculosis, a reductase involved in long-chain fatty acid biosynthesis. , 2002, Journal of molecular biology.

[60]  Gurdyal S Besra,et al.  Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. , 2002, The Biochemical journal.

[61]  Dick B Janssen,et al.  Identification of a Baeyer–Villiger monooxygenase sequence motif , 2002, FEBS letters.

[62]  L. Armitige,et al.  Evidence for a partial redundancy of the fibronectin‐binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis , 2002, Molecular microbiology.

[63]  Xavier Charpentier,et al.  MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. , 2002, Microbiology.

[64]  James C Sacchettini,et al.  Crystal Structures of Mycolic Acid Cyclopropane Synthases fromMycobacterium tuberculosis * , 2002, The Journal of Biological Chemistry.

[65]  Jin Kuk Yang,et al.  Crystallization and preliminary X-ray crystallographic analysis of the Rv2002 gene product from Mycobacterium tuberculosis, a beta-ketoacyl carrier protein reductase homologue. , 2002, Acta crystallographica. Section D, Biological crystallography.

[66]  C. Volker,et al.  Purification and Biochemical Characterization of theMycobacterium tuberculosis β-Ketoacyl-acyl Carrier Protein Synthases KasA and KasB* , 2001, The Journal of Biological Chemistry.

[67]  B. Monsarrat,et al.  Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. , 2001, Analytical chemistry.

[68]  C. Locht,et al.  Biochemical Characterization of Acyl Carrier Protein (AcpM) and Malonyl-CoA:AcpM Transacylase (mtFabD), Two Major Components ofMycobacterium tuberculosis Fatty Acid Synthase II* , 2001, The Journal of Biological Chemistry.

[69]  D. Minnikin,et al.  Separation and characterization of individual mycolic acids in representative mycobacteria. , 2001, Microbiology.

[70]  P. Brennan,et al.  Expression, purification, and characterization of the Mycobacterium tuberculosis acyl carrier protein, AcpM. , 2001, Biochimica et biophysica acta.

[71]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[72]  M. Glickman,et al.  The Mycobacterium tuberculosis cmaA2 Gene Encodes a Mycolic Acid trans-Cyclopropane Synthetase* , 2001, The Journal of Biological Chemistry.

[73]  C. Rock,et al.  Identification and substrate specificity of beta -ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. , 2000, The Journal of biological chemistry.

[74]  William R. Jacobs,et al.  Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis , 2000, Nature Medicine.

[75]  James C. Sacchettini,et al.  Inactivation of the inhA-Encoded Fatty Acid Synthase II (FASII) Enoyl-Acyl Carrier Protein Reductase Induces Accumulation of the FASI End Products and Cell Lysis of Mycobacterium smegmatis , 2000, Journal of bacteriology.

[76]  I. Smith,et al.  Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice , 2000, Molecular microbiology.

[77]  M. Glickman,et al.  A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. , 2000, Molecular cell.

[78]  M. Daffé,et al.  Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85 , 2000, Molecular microbiology.

[79]  I. Yano,et al.  Mycolic acids from Rhodococcus, Gordonia, and Dietzia. , 2000, Journal of microbiological methods.

[80]  H. Marrakchi,et al.  InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. , 2000, Microbiology.

[81]  I. Yano,et al.  Mycolic acid analysis in Nocardia species. The mycolic acid compositions of Nocardia asteroides, N. farcinica, and N. nova. , 1999, Journal of microbiological methods.

[82]  J. Sacchettini,et al.  The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance. , 1998, Microbiology.

[83]  I. Smith,et al.  Mutations in the cmaB gene are responsible for the absence of methoxymycolic acid in Mycobacterium bovis BCG Pasteur. , 1998, Molecular microbiology.

[84]  D. Crane,et al.  The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis , 1998, Molecular microbiology.

[85]  D. Mead,et al.  The Biosynthesis of Mycolic Acids in Mycobacterium tuberculosis , 1998, The Journal of Biological Chemistry.

[86]  R. Slayden,et al.  Mycolic acids: structure, biosynthesis and physiological functions. , 1998, Progress in lipid research.

[87]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[88]  M. Daffé,et al.  The envelope layers of mycobacteria with reference to their pathogenicity. , 1998, Advances in microbial physiology.

[89]  Cyclopropane ring formation in membrane lipids of bacteria. , 1997, Microbiology and molecular biology reviews : MMBR.

[90]  G. Besra,et al.  Mycolic acid biosynthesis: definition and targeting of the Claisen condensation step. , 1997, Biochimica et biophysica acta.

[91]  G. Besra,et al.  Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. , 1997, Science.

[92]  J. Musser,et al.  MMAS-1, the Branch Point Between cis- and trans-Cyclopropane-containing Oxygenated Mycolates in Mycobacterium tuberculosis* , 1997, The Journal of Biological Chemistry.

[93]  M. Daffé,et al.  Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto‐ and hydroxy‐mycolic acids , 1997, Molecular microbiology.

[94]  J. Chun,et al.  A proposal to reclassify Nocardia pinensis Blackall et al. as Skermania piniformis gen. nov., comb. nov. , 1997, International journal of systematic bacteriology.

[95]  Y. Yuan,et al.  A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[96]  M. Daffé Structure de l'enveloppe de Mycobacterium tuberculosis* , 1996 .

[97]  C. Horn,et al.  Effects of isoniazid on ultrastructure of Mycobacterium aurum and Mycobacterium tuberculosis and on production of secreted proteins , 1996, Antimicrobial agents and chemotherapy.

[98]  M. Bibb,et al.  Relationships between fatty acid and polyketide synthases from Streptomyces coelicolor A3(2): characterization of the fatty acid synthase acyl carrier protein , 1996, Journal of bacteriology.

[99]  C. Rock,et al.  Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. , 1996, Biochimica et biophysica acta.

[100]  J. Cronan,et al.  Polar allele duplication for transcriptional analysis of consecutive essential genes: application to a cluster of Escherichia coli fatty acid biosynthetic genes , 1996, Journal of bacteriology.

[101]  P. Kolattukudy,et al.  Cloning, sequencing and characterization of a fatty acid synthase-encoding gene from Mycobacterium tuberculosis var. bovis BCG. , 1996, Gene.

[102]  D. Sherman,et al.  The Biosynthesis of Cyclopropanated Mycolic Acids in Mycobacterium tuberculosis , 1995, The Journal of Biological Chemistry.

[103]  J C Sacchettini,et al.  Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. , 1995, Biochemistry.

[104]  J. Belisle,et al.  Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[105]  J. Sacchettini,et al.  Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis , 1995, Science.

[106]  E. Stackebrandt,et al.  Dietzia, a new genus including Dietzia maris comb. nov., formerly Rhodococcus maris. , 1995, International journal of systematic bacteriology.

[107]  G Labesse,et al.  Structural comparisons lead to the definition of a new superfamily of NAD(P)(H)-accepting oxidoreductases: the single-domain reductases/epimerases/dehydrogenases (the 'RED' family). , 1994, The Biochemical journal.

[108]  W. Jacobs,et al.  inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. , 1994, Science.

[109]  A. Datta,et al.  Biosynthesis of a novel 3-oxo-2-tetradecyloctadecanoate-containing phospholipid by a cell-free extract of Corynebacterium diphtheriae. , 1993, Biochimica et biophysica acta.

[110]  J. Guesdon,et al.  Isolation of specific DNA fragments of Mycobacterium avium and their possible use in diagnosis , 1993, Journal of clinical microbiology.

[111]  P. Riegel,et al.  High-performance liquid chromatography of corynomycolic acids as a tool in identification of Corynebacterium species and related organisms , 1992, Journal of clinical microbiology.

[112]  A. Quémard,et al.  Mycolic acid synthesis: a target for ethionamide in mycobacteria? , 1992, Antimicrobial Agents and Chemotherapy.

[113]  P. Brennan,et al.  Location of the mycolyl ester substituents in the cell walls of mycobacteria. , 1991, The Journal of biological chemistry.

[114]  P. Wheeler,et al.  Enzymes for biosynthesis de novo and elongation of fatty acids in mycobacteria grown in host cells: is Mycobacterium leprae competent in fatty acid biosynthesis? , 1990, Journal of general microbiology.

[115]  P. Kolattukudy,et al.  A Very Long-Chain Fatty Acid Elongation System in Mycobacterium avium and a Possible Mode of Action of Isoniazid on the System , 1989 .

[116]  M. Daffé,et al.  Etude structurale et métabolique des acides mycoliques de Mycobacterium fortuitum , 1987 .

[117]  K. Shizukuishi,et al.  Mass-spectrometric identification of trehalose 6-monomycolate synthesized by the cell-free system of Bacterionema matruchotii. , 1985, Archives of biochemistry and biophysics.

[118]  V. Lévy-Frébault,et al.  New kinds of unsaturated mycolic acids from Mycobacterium fallax sp. nov. , 1985 .

[119]  T. Shimakata,et al.  In vitro synthesis of mycolic acids by the fluffy layer fraction of Bacterionema matruchotii. , 1984, Archives of biochemistry and biophysics.

[120]  N. Qureshi,et al.  Biosynthesis of C30 to C56 fatty acids by an extract of Mycobacterium tuberculosis H37Ra , 1984, Journal of bacteriology.

[121]  V. Levy-Frebault,et al.  Intérêt taxonomiquedes acides gras des mycobactéries: Proposition d'une méthode d'analyse , 1983 .

[122]  M. Daffé,et al.  [Taxonomic value of mycobacterial fatty acids: proposal for a method of analysis]. , 1983, Annales de microbiologie.

[123]  D. Minnikin,et al.  Mycolic acid patterns of four vaccine strains of Mycobacterium bovis BCG. , 1983, Journal of general microbiology.

[124]  G. Gray,et al.  Structures of the two homologous series of dialkene mycolic acids from Mycobacterium smegmatis. , 1982, The Journal of biological chemistry.

[125]  D. Minnikin,et al.  The oxygenated mycolic acids of Mycobacterium fortuitum, M. Farcinogenes and M. Senegalense , 1982 .

[126]  I. Yano,et al.  Incorporation of 18O into long-chain, secondary alcohols derived from ester mycolic acids in Mycobacterium phlei , 1982 .

[127]  D. Minnikin,et al.  Studies on the mycolic acids from the walls of Mycobacterium microti. , 1982, Journal of general microbiology.

[128]  S. Kikuchi,et al.  New malonyl-CoA-dependent fatty acid elongation system in Mycobacterium smegmatis. , 1982, Journal of biochemistry.

[129]  M. Daffé,et al.  Acide mycolique epoxydique: un nouveau type d'acide mycolique , 1981 .

[130]  A. Savagnac,et al.  Isolation, structural studies and chemical synthesis of a 'palmitone lipid' from Corynebacterium diphtheriae. , 1978, Chemistry and physics of lipids.

[131]  K. Bloch Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. , 2006, Advances in enzymology and related areas of molecular biology.

[132]  Y. Fujita,et al.  Acetyl-CoA-dependent elongation of fatty acids in Mycobacterium smegmatis. , 1977, Journal of biochemistry.

[133]  J. Odriozola,et al.  Fatty acid synthetase activity in Mycobacterium smegmatis. Characterization of the acyl carrier protein-dependent elongating system. , 1977, Biochimica et biophysica acta.

[134]  D. Vance,et al.  Control mechanisms in the synthesis of saturated fatty acids. , 1977, Annual review of biochemistry.

[135]  K. Takayama,et al.  Effect of Isoniazid on the In Vivo Mycolic Acid Synthesis, Cell Growth, and Viability of Mycobacterium tuberculosis , 1972, Antimicrobial Agents and Chemotherapy.

[136]  A. Alberts,et al.  Acetyl CoA carboxylase: the purified transcarboxylase component. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[137]  W. Hancock,et al.  Enzyme Specificity as a Factor in Regulation of Fatty Acid Chain Length in Escherichia coli , 1970, Science.

[138]  C. Lacave,et al.  Relations structurales entre les acides mycoliques insaturés et les acides inférieurs insaturés synthétisés par Mycobacterium phlei , 1970 .

[139]  M. Lanéelle,et al.  Structure d'acides mycoliques et d'un intermediaire dans la biosynthèse d'acides mycoliques dicarboxyliques , 1970 .

[140]  K. Bloch,et al.  Mycobacterium phlei Fatty Acid Synthetase—A Bacterial Multienzyme Complex , 1969, Nature.

[141]  K. Bloch Enzymic synthesis of monounsaturated fatty acids , 1969 .

[142]  E. Lederer Some problems concerning biological C-alkylation reactions and phytosterol biosynthesis , 1969 .

[143]  Etémadi Ah Structural and biogenetic correlations of mycolic acids in relation to the phylogenesis of various genera of Actinomycetales , 1967 .

[144]  A. Etémadi,et al.  [On the biogenetic origin of 2-eicosanol and 2-octadecanol of Mycobacterium avium]. , 1965, Bulletin de la Societe de chimie biologique.

[145]  K. Bloch,et al.  COFACTOR REQUIREMENTS FOR THE FORMATION OF DELTA-9-UNSATURATED FATTY ACIDS IN MYCOBACTERIUM PHLEI. , 1964, The Journal of biological chemistry.

[146]  E. Lederer,et al.  [Biosynthesis of corynomycolic acid from 2 molecules of palmitic acid]. , 1960, Biochemische Zeitschrift.

[147]  E. Lederer,et al.  Structure of the Mycolic Acids of Mycobacteria , 1950, Nature.