A Microfabricated Planar Electrospray Array Ionic Liquid Ion Source With Integrated Extractor

This paper reports the design, fabrication, and experimental characterization of a fully microfabricated planar array of externally fed electrospray emitters that produces heavy molecular ions from the ionic liquids EMI-BF4 and EMI-Im. The microelectromechanical systems (MEMS) electrospray array is composed of the following two microfabricated parts: 1) an emitter die with as many as 502 emitters in 1.13 cm2 and 2) an extractor component that provides assembly alignment, electrical insulation, and a common bias voltage to the emitter array. The devices were created using Pyrex and silicon substrates, as well as microfabrication techniques such as deep reactive ion etching, low-temperature fusion bonding, and anodic bonding. The emitters are coated with black silicon, which acts as a wicking material for transporting the liquid to the emitter tips. The extractor electrode uses a 3-D MEMS packaging technology that allows hand assembly of the two components with micrometer-level precision. Experimental characterization of the MEMS electrospray array includes current-voltage characteristics, time-of-flight mass spectrometry, beam divergence, and imprints on a collector. The data show that with both ionic liquids and in both polarities, the electrospray array works in the pure ionic regime, emitting ions with as little as 500 V of bias voltage. The data suggest that the MEMS electrospray array ion source could be used in applications such as coating, printing, etching, and nanosatellite propulsion.

[1]  Séverine Le Gac,et al.  A planar on-chip micro-nib interface for NanoESI–MS microfluidic applications , 2004 .

[2]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[3]  Katharine Smith,et al.  Electrospray Performance of Microfabricated Colloid Thruster Arrays , 2006 .

[4]  Stefan Bengtsson,et al.  Formation of Silicon Structures by Plasma‐Activated Wafer Bonding , 2000 .

[5]  Peter C. Norgaard,et al.  The NASA GSFC MEMS Colloidal Thruster , 2004 .

[6]  S. Edward Law,et al.  Agricultural electrostatic spray application: a review of significant research and development during the 20th century , 2001 .

[7]  Blaise Gassend,et al.  A Fully Integrated Microfabricated Externally Wetted Electrospray Thruster , 2007 .

[8]  Luis Fernando,et al.  The design, fabrication and testing of micro-fabricated linear and planar colloid thruster arrays , 2004 .

[9]  Juan Fern The Fluid Dynamics of Taylor Cones , 2007 .

[10]  Modeling the effects of device scaling on field emitter array performance , 1996 .

[11]  Robin D. Rogers,et al.  Materials science: Reflections on ionic liquids , 2007, Nature.

[12]  Jean-Pierre Raskin,et al.  Low-temperature wafer bonding optimal O-2 plasma surface pretreatment time , 2004 .

[13]  Shu-Hui Chen,et al.  Chip‐based microfluidic devices coupled with electrospray ionization‐mass spectrometry , 2005, Electrophoresis.

[14]  T. C. Garza Optimizing wettability of externally wetted microfabricated silicon electrospray thrusters , 2007 .

[15]  P. C. Herren,et al.  Alternating current operation of a colloid source , 1969 .

[16]  Martin Tajmar,et al.  MEMS Indium FEEP Thruster: Manufacturing Study and First Prototype Results , 2004 .

[17]  B. Gassend,et al.  A Fully Microfabricated Externally Wetted Electrospray Thruster , 2007 .

[18]  M. Martinez-Sanchez,et al.  A Micro-Fabricated Linear Array of Electrospray Emitters for Thruster Applications , 2006, Journal of Microelectromechanical Systems.

[19]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[20]  C. M. Waits,et al.  Scalable Electrospray Components for Portable Power Applications Using MEMS Fabrication Techniques , 2006 .

[21]  B. Gassend,et al.  A fully microfabricated two-dimensional electrospray array with applications to space propulsion , 2007 .

[22]  K. Marsh,et al.  Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity , 2005 .

[23]  C. Enke,et al.  Electrochemical processes in electrospray ionization mass spectrometry , 2000, Journal of mass spectrometry : JMS.

[24]  R. Gomer,et al.  Field Emission and Field Ionization , 1961 .

[25]  S. Spearing,et al.  Controlling and Testing the Fracture Strength of Silicon on the Mesoscale , 2000 .

[26]  K. Okuyama,et al.  Preparation of ZnS Nanoparticles by Electrospray Pyrolysis , 2000 .

[27]  Herbert Shea,et al.  Design and fabrication of an integrated MEMS-based colloid micropropulsion system , 2007 .

[28]  J. F. D. L. Mora,et al.  Energy distribution and spatial structure of electrosprays of ionic liquids in vacuo , 2004 .

[29]  Alan G. R. Evans,et al.  Realisation of very high voltage electrode-nozzle systems for MEMS , 2004 .

[30]  L. M. Varela,et al.  Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: Evidence of Vogel–Tamman–Fulcher behavior , 2006 .

[31]  Miko Elwenspoek,et al.  The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control , 1995 .

[32]  I. Lazar,et al.  Microfabricated devices: A new sample introduction approach to mass spectrometry. , 2006, Mass spectrometry reviews.

[33]  Manuel Gamero-Castaño,et al.  Electrospray as a source of nanoparticles for efficient colloid thrusters , 2000 .

[34]  Manuel Gamero-Castaño,et al.  Source of heavy molecular ions based on Taylor cones of ionic liquids operating in the pure ion evaporation regime , 2003 .

[35]  Zhaoying Zhou,et al.  Development of a MEMS based colloid thruster with sandwich structure , 2005 .

[36]  Paulo Lozano,et al.  Ionic liquid ion sources: characterization of externally wetted emitters. , 2005, Journal of colloid and interface science.

[37]  M. Martinez-Sanchez,et al.  A Planar Array of Micro-Fabricated Electrospray Emitters for Thruster Applications , 2006, Journal of Microelectromechanical Systems.

[38]  Dong Sun,et al.  Investigation of the onset voltage for the design of a microfabricated colloid thruster , 2006, IEEE/ASME Transactions on Mechatronics.

[39]  G. Sorensen,et al.  Electrostatic spraying:  a novel technique for preparation of polymer coatings on electrodes. , 1996, Analytical chemistry.

[40]  Precision Hand Assembly of MEMS Subsystems Using DRIE-Patterned Deflection Spring Structures: An Example of an Out-of-Plane Substrate Assembly , 2007, Journal of Microelectromechanical Systems.

[41]  Y. Tai,et al.  A micromachined chip-based electrospray source for mass spectrometry. , 2000, Analytical chemistry.

[42]  The Design, Fabrication and Testing of Micro-fabricated Linear and Planar Colloid Thruster Arrays , 2004 .

[43]  Suojiang Zhang,et al.  Determination of Physical Properties for the Binary System of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + H2O , 2004 .

[44]  Mohan Edirisinghe,et al.  Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization , 2004 .

[45]  Derek Dunn-Rankin,et al.  Effects of capillary spacing on EHD spraying from an array of cone jets , 2002 .

[46]  Mark A. Reed,et al.  Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets , 2006 .

[47]  Yukihiro Yoshida,et al.  Surface tension measurements of highly conducting ionic liquids , 2006 .

[48]  Juergen Mueller Thruster Options for Microspacecraft : A Review and Evaluation of Existing Hardware and Emerging Technologies , 1997 .

[49]  G. Mair Theoretical determination of current-voltage curves for liquid metal ion sources , 1984 .

[50]  Manuel Martinez-Sanchez,et al.  EXPERIMENTAL MEASUREMENTS OF COLLOID THRUSTER PLUMES IN THE ION-DROPLET MIXED REGIME , 2002 .

[51]  S. Senturia Microsystem Design , 2000 .

[52]  Herbert Shea,et al.  A method to determine the onset voltage of single and arrays of electrospray emitters , 2008 .

[53]  Louis A. Romero,et al.  Flow in an open channel capillary , 1996, Journal of Fluid Mechanics.

[54]  S. Büttgenbach,et al.  Micro-structured electrode arrays: high-frequency discharges at atmospheric pressure—characterization and new applications , 2004 .

[55]  D. DeVoe,et al.  Efficient electrospray ionization from polymer microchannels using integrated hydrophobic membranes. , 2004, Lab on a chip.

[56]  L. Bischoff,et al.  On the dynamics of liquid metal ion sources , 2002 .

[57]  Geoffrey Ingram Taylor,et al.  Disintegration of water drops in an electric field , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[58]  Göran Stemme,et al.  Development of micromachined hollow tips for protein analysis based on nanoelectrospray ionization mass spectrometry , 2002 .

[59]  J. Mora,et al.  The current emitted by highly conducting Taylor cones , 1994, Journal of Fluid Mechanics.

[60]  Martin Tajmar,et al.  Indium FEEP Multiemitter Development and Test Results , 2004 .

[61]  Mark A. Reed,et al.  Liquid fuel microcombustor using microfabricated multiplexed electrospray sources , 2007 .

[62]  The electrospray and combustion at the mesoscale , 2003 .

[63]  Impregnated-electrode-type liquid metal ion source , 1986 .

[64]  Julius Perel,et al.  Mechanisms of Emitter Surface Damage During Electrohydrodynamic Colloid Particle Generation and Acceleration. , 1978 .

[65]  Carretero Benignos,et al.  Numerical simulation of a single emitter colloid thruster in pure droplet cone-jet mode , 2005 .

[66]  B. Gassend,et al.  Precision In-Plane Hand Assembly of Bulk-Microfabricated Components for High-Voltage MEMS Arrays Applications , 2009, Journal of Microelectromechanical Systems.

[67]  P. D. Prewett,et al.  Focused ion beams from liquid metal ion sources , 1991 .

[68]  D. Knapp,et al.  Miniaturized multichannel electrospray ionization emitters on poly(dimethylsiloxane) microfluidic devices , 2001, Electrophoresis.

[69]  Juergen Mueller,et al.  Thruster Optins for Microspacecraft: A Review and Evaluation of Existing Hardware and Emerging Technologies , 1997 .