Field-effect sensors - from pH sensing to biosensing: sensitivity enhancement using streptavidin-biotin as a model system.

Field-Effect Transistor sensors (FET-sensors) have been receiving increasing attention for biomolecular sensing over the last two decades due to their potential for ultra-high sensitivity sensing, label-free operation, cost reduction and miniaturisation. Whilst the commercial application of FET-sensors in pH sensing has been realised, their commercial application in biomolecular sensing (termed BioFETs) is hindered by poor understanding of how to optimise device design for highly reproducible operation and high sensitivity. In part, these problems stem from the highly interdisciplinary nature of the problems encountered in this field, in which knowledge of biomolecular-binding kinetics, surface chemistry, electrical double layer physics and electrical engineering is required. In this work, a quantitative analysis and critical review has been performed comparing literature FET-sensor data for pH-sensing with data for sensing of biomolecular streptavidin binding to surface-bound biotin systems. The aim is to provide the first systematic, quantitative comparison of BioFET results for a single biomolecular analyte, specifically streptavidin, which is the most commonly used model protein in biosensing experiments, and often used as an initial proof-of-concept for new biosensor designs. This novel quantitative and comparative analysis of the surface potential behaviour of a range of devices demonstrated a strong contrast between the trends observed in pH-sensing and those in biomolecule-sensing. Potential explanations are discussed in detail and surface-chemistry optimisation is shown to be a vital component in sensitivity-enhancement. Factors which can influence the response, yet which have not always been fully appreciated, are explored and practical suggestions are provided on how to improve experimental design.

[1]  Amir Dabiran,et al.  Electrical detection of immobilized proteins with ungated AlGaN∕GaN high-electron-mobility Transistors , 2005 .

[2]  Kara Brower,et al.  Limit of detection of field effect transistor biosensors: Effects of surface modification and size dependence , 2014 .

[3]  Jan H. Jensen,et al.  Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors. , 2011, Nanoscale.

[4]  P Bergveld,et al.  A new approach to immunoFET operation. , 1990, Biosensors & bioelectronics.

[5]  Jin-Woo Han,et al.  Double-gate nanowire field effect transistor for a biosensor. , 2010, Nano letters.

[6]  Sang Yeol Lee,et al.  ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode , 2010 .

[7]  Niklas Elfström Silicon Nanowires for Biomolecule Detection , 2008 .

[8]  Andreas Offenhäusser,et al.  Fabrication and application of a microfluidic‐embedded silicon nanowire biosensor chip , 2010 .

[9]  Christian A. Ringhofer,et al.  Multiscale Modeling of Planar and Nanowire Field-Effect Biosensors , 2010, SIAM J. Appl. Math..

[10]  M.A. Alam,et al.  Design Considerations of Silicon Nanowire Biosensors , 2007, IEEE Transactions on Electron Devices.

[11]  Nitin K. Rajan,et al.  Functionalized Polyelectrolytes Assembling on Nano‐BioFETs for Biosensing Applications , 2015 .

[12]  Can Zhang,et al.  Network single-walled carbon nanotube biosensors for fast and highly sensitive detection of proteins , 2011, Nanotechnology.

[13]  Y. Shibuta,et al.  Effect of double-stranded DNA on electrical double layer structure at oxide/electrolyte interface in classical molecular dynamics simulation , 2015 .

[14]  Piet Bergveld,et al.  Extracellular Potential Recordings by Means of a Field Effect Transistor Without Gate Metal, Called OSFET , 1976, IEEE Transactions on Biomedical Engineering.

[15]  J. Eijkel,et al.  Ion-Step Method for Surface Potential Sensing of Silicon Nanowires. , 2015, Analytical chemistry.

[16]  Stephanie Thalberg,et al.  Fundamentals Of Modern Vlsi Devices , 2016 .

[17]  Cees Dekker,et al.  Optimizing the signal-to-noise ratio for biosensing with carbon nanotube transistors. , 2009, Nano letters.

[18]  Y. Shibuta,et al.  Distinctive Potential Behavior at the Oxidized Surface of a Semiconductor Device in a Concentrated Aqueous Salt Solution , 2014 .

[19]  Ulrich J Krull,et al.  Silicon nanowires as field-effect transducers for biosensor development: a review. , 2014, Analytica chimica acta.

[20]  Jonghyun Go,et al.  Theory of signal and noise in double-gated nanoscale electronic pH sensors. , 2012, Journal of applied physics.

[21]  Yves J. Chabal,et al.  Infrared characterization of biotinylated silicon oxide surfaces, surface stability, and specific attachment of streptavidin. , 2009, The journal of physical chemistry. B.

[22]  R. Sun,et al.  Importance of controlling nanotube density for highly sensitive and reliable biosensors functional in physiological conditions. , 2010, ACS nano.

[23]  Xuexin Duan,et al.  Performance limitations for nanowire/nanoribbon biosensors. , 2013, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[24]  Michael J. Schöning,et al.  Bio FEDs (Field‐Effect Devices): State‐of‐the‐Art and New Directions , 2006 .

[25]  Wei Zhou,et al.  General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. , 2015, Nano letters.

[26]  J. Colinge Silicon-on-Insulator Technology: Materials to VLSI , 1991 .

[27]  Robert J. Messinger,et al.  Making it stick: convection, reaction and diffusion in surface-based biosensors , 2008, Nature Biotechnology.

[28]  Jordi Riu,et al.  Nanosensors in environmental analysis. , 2006, Talanta.

[29]  D. Kwon,et al.  Investigation of drift effect on silicon nanowire field effect transistor based pH sensor , 2016 .

[30]  Jing Li,et al.  Liquid and back gate coupling effect: toward biosensing with lowest detection limit. , 2014, Nano letters.

[31]  Alexios Birbas,et al.  Modeling of fluctuation processes on the biochemically sensorial surface of silicon nanowire field-effect transistors , 2015 .

[32]  Sungho Kim,et al.  A charge pumping technique to identify biomolecular charge polarity using a nanogap embedded biotransistor , 2010 .

[33]  Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins. , 2016, Nanotechnology.

[34]  T. Vo‐Dinh,et al.  Biosensors and biochips: advances in biological and medical diagnostics , 2000, Fresenius' journal of analytical chemistry.

[35]  Shi-Li Zhang,et al.  Contacting versus insulated gate electrode for Si nanoribbon field-effect sensors operating in electrolyte. , 2011, Analytical chemistry.

[36]  Jan Linnros,et al.  Silicon nanoribbons for electrical detection of biomolecules. , 2008, Nano letters.

[37]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[38]  Muhammad A. Alam,et al.  Screening-limited response of nanobiosensors. , 2007, Nano letters.

[39]  C. Cantor,et al.  Molecular cloning and nucleotide sequence of the streptavidin gene. , 1986, Nucleic acids research.

[40]  Albert V. Davydov,et al.  Immobilization of streptavidin on 4H-SiC for biosensor development , 2012 .

[41]  Nitin K. Rajan,et al.  Optimal signal-to-noise ratio for silicon nanowire biochemical sensors. , 2011, Applied physics letters.

[42]  Jan H. Jensen,et al.  Indium arsenide nanowire field-effect transistors for pH and biological sensing , 2014 .

[43]  Kshitij Auluck,et al.  Programmable ion-sensitive transistor interfaces. III. Design considerations, signal generation, and sensitivity enhancement. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[45]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[46]  D. E. Yates,et al.  Site-binding model of the electrical double layer at the oxide/water interface , 1974 .

[47]  Po-Chiang Chen,et al.  A calibration method for nanowire biosensors to suppress device-to-device variation. , 2009, ACS nano.

[48]  Philip H. Gordon,et al.  Programmable ion-sensitive transistor interfaces. II. Biomolecular sensing and manipulation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  A. Armston The immunoassay handbook , 2014, Annals of clinical biochemistry.

[50]  Bonsang Gu,et al.  A dielectric-modulated field-effect transistor for biosensing. , 2007, Nature nanotechnology.

[51]  Fred J Sigworth,et al.  Importance of the Debye screening length on nanowire field effect transistor sensors. , 2007, Nano letters.

[52]  H.-S. Philip Wong Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[53]  W. Lu,et al.  Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors. , 2008, Biosensors & bioelectronics.

[54]  Chris-Kriton Skylaris,et al.  Acid-base dissociation mechanisms and energetics at the silica-water interface: An activationless process. , 2015, Journal of colloid and interface science.

[55]  Hyung-Kyu Lim,et al.  Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET's , 1983, IEEE Transactions on Electron Devices.

[56]  W. Lu,et al.  High sensitivity AlGaN/GaN field effect transistor protein sensors operated in the subthreshold regime by a control gate electrode , 2011 .

[57]  Enhancement of detection by selective modification of silicon nanobelt field-effect transistors via localized Joule heating , 2014 .

[58]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[59]  G. Shalev,et al.  Specific and label-free femtomolar biomarker detection with an electrostatically formed nanowire biosensor , 2013 .

[60]  M. Soudijn Proton Transport in Aqueous Ionic Solutions , 2012 .

[61]  R. Stoop,et al.  True reference nanosensor realized with silicon nanowires. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[62]  P Bergveld,et al.  A critical evaluation of direct electrical protein detection methods. , 1991, Biosensors & bioelectronics.

[63]  Leif Nyholm,et al.  Current Instability for Silicon Nanowire Field-Effect Sensors Operating in Electrolyte with Platinum Gate Electrodes , 2011 .

[64]  W. Cho,et al.  Performance Enhancement of Capacitive-Coupling Dual-gate Ion-Sensitive Field-Effect Transistor in Ultra-Thin-Body , 2014, Scientific Reports.

[65]  Peng Xiong,et al.  Functionalized SnO₂ nanobelt field-effect transistor sensors for label-free detection of cardiac troponin. , 2011, Biosensors & bioelectronics.

[66]  Effect of subthreshold slope on the sensitivity of nanoribbon sensors. , 2016, Nanotechnology.

[67]  J. Dufrêche,et al.  A silicon nanowire ion-sensitive field-effect transistor with elementary charge sensitivity , 2010, 1010.1232.

[68]  M. Meyyappan,et al.  Silicon nanowire ion sensitive field effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics. , 2011, The Analyst.

[69]  Xuefeng Guo,et al.  Carbon nanomaterials field-effect-transistor-based biosensors , 2012 .

[70]  Anuj Nehra,et al.  Current trends in nanomaterial embedded field effect transistor-based biosensor. , 2015, Biosensors & bioelectronics.

[71]  Albert van den Berg,et al.  Al2O3/silicon nanoISFET with near ideal nernstian response. , 2011, Nano letters.

[72]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[73]  M. Reed,et al.  Quantitative nanoscale field effect sensors , 2014 .

[74]  Cees Dekker,et al.  Carbon nanotube biosensors: The critical role of the reference electrode , 2007 .

[75]  F. J. Wolf,et al.  THE PROPERTIES OF STREPTAVIDIN, A BIOTIN-BINDING PROTEIN PRODUCED BY STREPTOMYCETES. , 1964, Archives of biochemistry and biophysics.

[76]  Nitin K. Rajan,et al.  Multiplexed SOI BioFETs. , 2011, Biosensors & bioelectronics.

[77]  Yossi Rosenwaks,et al.  The interplay between pH sensitivity and label-free protein detection in immunologically modified nano-scaled field-effect transistor. , 2012, Biosensors & bioelectronics.

[78]  T. Ning,et al.  Optimization of pH sensing using silicon nanowire field effect transistors with HfO2 as the sensing surface , 2011, Nanotechnology.

[79]  Water and Halide Adsorption to Corrosion Surfaces : Molecular Simulations of Atmospheric Interactions with Aluminum Oxyhydroxide and Gold , 2008 .

[80]  Da Li,et al.  Fabrication and comparison of MoS2 and WSe2 field-effect transistor biosensors , 2015 .

[81]  Chris Toumazou,et al.  Piet Bergveld - 40 years of ISFET technology: from neuronal sensing to DNA sequencing , 2011 .

[82]  M. Meyerhoff,et al.  Response of ion-selective field effect transistors to carbon dioxide and organic acids. , 1985, Analytical chemistry.

[83]  Dorota G. Pijanowska,et al.  Optimization of Urea-EnFET Based on Ta2O5 Layer with Post Annealing , 2011, Sensors.

[84]  Hee Cheul Choi,et al.  Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. , 2006, Journal of the American Chemical Society.

[85]  N. D. Arora,et al.  MOSFET Models for VLSI Circuit Simulation: Theory and Practice , 1993 .

[86]  R. Schasfoort,et al.  Handbook of surface plasmon resonance , 2008 .

[87]  Thomas W. Healy,et al.  Ionizable surface group models of aqueous interfaces , 1978 .

[88]  Bharat Bhushan,et al.  ImmunoFET feasibility in physiological salt environments , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[89]  Ilya Sychugov,et al.  Surface charge sensitivity of silicon nanowires: size dependence. , 2007, Nano letters.

[90]  Zhaohui Zhong,et al.  Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm. , 2016, Accounts of chemical research.

[91]  Jan H. Jensen,et al.  Quantifying signal changes in nano-wire based biosensors. , 2011, Nanoscale.

[92]  Zhaohui Zhong,et al.  Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. , 2012, Nano letters.

[93]  G. Shalev,et al.  Electrostatic Limit of Detection of Nanowire-Based Sensors. , 2015, Small.

[95]  Characterization and Capacitive Modeling of Target Concentration-Dependent Subthreshold Swing in Silicon Nanoribbon Biosensors , 2014, IEEE Electron Device Letters.

[96]  Tiao-Yuan Huang,et al.  Novel poly-silicon nanowire field effect transistor for biosensing application. , 2009, Biosensors & bioelectronics.

[97]  Muhammad A. Alam,et al.  Performance limits of nanobiosensors , 2006 .

[98]  Y. Okabe,et al.  Ion-sensitive field-effect transistors with inorganic gate oxide for pH sensing , 1982, IEEE Transactions on Electron Devices.

[99]  Sung-Jin Choi,et al.  A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor , 2015, Scientific Reports.

[100]  C. Schönenberger,et al.  Nernst limit in dual-gated Si-nanowire FET sensors. , 2010, Nano letters.

[101]  A. Tarasov Silicon nanowire field-effect transistors for sensing applications , 2012 .

[102]  S. D. Collins,et al.  A physical model for drift in pH ISFETs , 1998 .

[103]  M. Reed,et al.  Temperature dependence of 1∕f noise mechanisms in silicon nanowire biochemical field effect transistors. , 2010, Applied physics letters.

[104]  J. Bokor,et al.  Streptavidin as CNTs and DNA Linker for the Specific Electronic and Optical Detection of DNA Hybridization , 2012 .

[105]  Gengfeng Zheng,et al.  Frequency domain detection of biomolecules using silicon nanowire biosensors. , 2010, Nano letters.

[106]  K. Radulovic,et al.  Adsorption-desorption noise in microfluidic biosensors operating in multianalyte environments , 2015 .

[107]  J. Janata Historical review. Twenty years of ion-selective field-effect transistors , 1994 .

[108]  Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs. , 2015, Nanotechnology.

[109]  Chi On Chui,et al.  On the origin of enhanced sensitivity in nanoscale FET-based biosensors , 2014, Proceedings of the National Academy of Sciences.

[110]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[111]  M. Reed,et al.  Predictive simulations and optimization of nanowire field-effect PSA sensors including screening , 2013, Nanotechnology.

[112]  Charles M. Lieber,et al.  Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. , 2010, Nano letters.

[113]  Amanda Kussrow,et al.  Comparison of free-solution and surface-immobilized molecular interactions using a single platform. , 2012, Analytical chemistry.

[114]  Michel Calame,et al.  Understanding the electrolyte background for biochemical sensing with ion-sensitive field-effect transistors. , 2012, ACS nano.

[115]  Chi On Chui,et al.  Understanding and optimization of the sensitivity of nanoscale FET-based biosensors , 2014, Optics & Photonics - NanoScience + Engineering.

[116]  A. Ionescu,et al.  Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors , 2014 .

[117]  Jan H. Jensen,et al.  Effects of buffer composition and dilution on nanowire field-effect biosensors , 2013, Nanotechnology.

[118]  J. Eijkel,et al.  A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters , 1995 .

[119]  Simon G. Patching,et al.  Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. , 2014, Biochimica et biophysica acta.

[120]  S. Jamasb An analytical technique for counteracting drift in ion-selective field effect transistors (ISFETs) , 2004, IEEE Sensors Journal.

[121]  R. Sperling,et al.  Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[122]  S. Subramaniam,et al.  Direct molecular level measurements of the electrostatic properties of a protein surface. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Nitin K. Rajan,et al.  Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors. , 2013, Nanomedicine.

[124]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[125]  S. D. Collins,et al.  A physical model for threshold voltage instability in Si/sub 3/N/sub 4/-gate H/sup +/-sensitive FET's (pH ISFET's) , 1998 .

[126]  Huaying Zhao,et al.  The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. , 2010, Methods in molecular biology.

[127]  Taisun Kim,et al.  Detection, quantification, and profiling of PSA: current microarray technologies and future directions , 2016 .

[128]  P. Sheehan,et al.  Detection limits for nanoscale biosensors. , 2005, Nano letters.

[129]  Charles T. Campbell,et al.  Binding and Dissociation Kinetics of Wild-Type and Mutant Streptavidins on Mixed Biotin-Containing Alkylthiolate Monolayers , 2000 .

[130]  Hiroyuki Fujita,et al.  CMOS-compatible fabrication of top-gated field-effect transistor silicon nanowire-based biosensors , 2011 .

[131]  Charles L Brooks,et al.  The effects of ionic strength on protein stability: the cold shock protein family. , 2002, Journal of molecular biology.

[132]  Jin-Woo Han,et al.  Development of a Point-of-Care Testing Platform With a Nanogap-Embedded Separated Double-Gate Field Effect Transistor Array and Its Readout System for Detection of Avian Influenza , 2011, IEEE Sensors Journal.

[133]  P Bergveld,et al.  Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. , 1972, IEEE transactions on bio-medical engineering.

[134]  David Cahen,et al.  The Cooperative Molecular Field Effect , 2005 .

[135]  C R Cantor,et al.  Cooperative biotin binding by streptavidin. Electrophoretic behavior and subunit association of streptavidin in the presence of 6 M urea. , 1990, The Journal of biological chemistry.

[136]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[137]  C. Cantor,et al.  Characterization and crystallization of core streptavidin. , 1987, The Journal of biological chemistry.

[138]  Xuexin Duan,et al.  Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. , 2012, Nature nanotechnology.

[139]  M. Meyyappan,et al.  Investigation of the electrical stability of Si-nanowire biologically sensitive field-effect transistors with embedded Ag/AgCl pseudo reference electrode , 2013 .

[140]  Mehmet Sarikaya,et al.  Selective detection of target proteins by peptide-enabled graphene biosensor. , 2014, Small.

[141]  F. Patolsky,et al.  Antigen-Dissociation from Antibody-Modified Nanotransistor Sensor Arrays as a Direct Biomarker Detection Method in Unprocessed Biosamples. , 2016, Nano letters.

[142]  J. Wendoloski,et al.  Structural origins of high-affinity biotin binding to streptavidin. , 1989, Science.

[143]  N. Dilbaghi,et al.  Biosensors as innovative tools for the detection of food borne pathogens. , 2011, Biosensors & bioelectronics.

[144]  Stephen C. Lee,et al.  (Invited) Planar Field Effect Transistor Biosensors: Toward Single Molecular Detection and Clinical Applications , 2014 .

[145]  Jens Zosel,et al.  Encapsulation of ISFET sensor chips , 2005 .

[146]  David A Hall,et al.  Matching models to data: a receptor pharmacologist's guide , 2010, British journal of pharmacology.

[147]  Nitin K. Rajan,et al.  Limit of Detection of Silicon BioFETs , 2013 .

[148]  Jung-Chuan Chou,et al.  Drift and Hysteresis Effects on AlN/SiO2 Gate pH Ion-Sensitive Field-Effect Transistor , 2003 .

[149]  M. Jamal Deen,et al.  Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design , 2007, Microelectron. Reliab..

[150]  G. Shalev,et al.  Gain optimization in ion sensitive field-effect transistor based sensor with fully depleted silicon on insulator , 2008 .

[151]  Filling the Gap , 2005 .

[152]  W. Mckinnon,et al.  Effect of screening on the sensitivity of field-effect devices used to detect oligonucleotides , 2008 .

[153]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[154]  A. Baró,et al.  Surface-charge differentiation of streptavidin and avidin by atomic force microscopy-force spectroscopy. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[155]  R. C. Bruch,et al.  Compositional and structural heterogeneity of avidin glycopeptides. , 1982, Biochemistry.

[156]  M. Calame,et al.  Signal-to-noise ratio in dual-gated silicon nanoribbon field-effect sensors , 2010, 1010.3169.

[157]  C. Roychaudhuri,et al.  Design Issues for Performance Enhancement in Nanostructured Silicon Oxide Biosensors: Modeling the Frequency Response , 2016, IEEE Transactions on Electron Devices.

[158]  M. Schöning,et al.  Recent advances in biologically sensitive field-effect transistors (BioFETs). , 2002, The Analyst.

[159]  Thomas Thundat,et al.  ReviewNanosensors for trace explosive detection , 2008 .

[160]  Debjani Paul,et al.  Label-free sub-picomolar protein detection with field-effect transistors. , 2010, Analytical chemistry.

[161]  U. Guth,et al.  Solid-state reference electrodes for potentiometric sensors , 2009 .

[162]  Gil Shalev,et al.  Standard CMOS Fabrication of a Sensitive Fully Depleted Electrolyte-Insulator-Semiconductor Field Effect Transistor for Biosensor Applications , 2009, Sensors.

[163]  Piet Bergveld,et al.  The future of biosensors , 1996 .

[164]  K. Banerjee,et al.  Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free biosensors , 2012 .

[165]  L. Bousse,et al.  The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs , 1984 .

[166]  Andreas Offenhäusser,et al.  Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices , 2005 .

[167]  N. Mortensen,et al.  Screening model for nanowire surface-charge sensors in liquid , 2007, 0708.2001.