Multilevel approximate Bayesian approaches for flows in highly heterogeneous porous media and their applications

Estimation of quantities related to high-contrast flow problems such as permeability field plays an important role in porous media characterization. A Generalized Multiscale Finite Element Method (GMsFEM) can be used for solving parameter-dependent (or stochastic) flow problems with multiscale nature. A hierarchy of approximations of different resolution can be provided by GMsFEM. Hence, it can be coupled with Multilevel Markov Chain Monte Carlo (MLMCMC) to generate samples in different levels and form the multilevel estimator. KarhunenLoeve Expansion (KLE) is used to parameterize the underlying random field by a function of Gaussian random field. Instead of MCMC, an Approximate Bayesian Computation (ABC) method can be used within the Multilevel Monte Carlo framework. ABC can be incorporated in different levels to reduce the computational cost and to produce an approximate solution by ensembling different levels.

[1]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[2]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[3]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[4]  Yalchin Efendiev,et al.  Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model , 2014, Technometrics.

[5]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[6]  Bangti Jin,et al.  Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems , 2014, 1402.5068.

[7]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[8]  Yalchin Efendiev,et al.  Mixed Generalized Multiscale Finite Element Methods and Applications , 2014, Multiscale Model. Simul..

[9]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[10]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[11]  Yalchin Efendiev,et al.  An adaptive GMsFEM for high-contrast flow problems , 2013, J. Comput. Phys..

[12]  Y. Efendiev,et al.  Generalized Multiscale Finite Element Methods. Nonlinear Elliptic Equations , 2013, 1304.5188.

[13]  Michel Loève,et al.  Probability Theory I , 1977 .

[14]  M. Loève Probability Theory II , 1978 .

[15]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..