Multilevel approximate Bayesian approaches for flows in highly heterogeneous porous media and their applications
暂无分享,去创建一个
[1] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[2] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[3] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[4] Yalchin Efendiev,et al. Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model , 2014, Technometrics.
[5] O. François,et al. Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.
[6] Bangti Jin,et al. Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems , 2014, 1402.5068.
[7] Olivier François,et al. Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..
[8] Yalchin Efendiev,et al. Mixed Generalized Multiscale Finite Element Methods and Applications , 2014, Multiscale Model. Simul..
[9] M. Giles. Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .
[10] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[11] Yalchin Efendiev,et al. An adaptive GMsFEM for high-contrast flow problems , 2013, J. Comput. Phys..
[12] Y. Efendiev,et al. Generalized Multiscale Finite Element Methods. Nonlinear Elliptic Equations , 2013, 1304.5188.
[13] Michel Loève,et al. Probability Theory I , 1977 .
[14] M. Loève. Probability Theory II , 1978 .
[15] Yalchin Efendiev,et al. Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..