Constructions of general polynomial lattice rules based on the weighted star discrepancy
暂无分享,去创建一个
Peter Kritzer | Josef Dick | Friedrich Pillichshammer | Gunther Leobacher | G. Leobacher | F. Pillichshammer | J. Dick | P. Kritzer
[1] Pierre L’Ecuyer,et al. Polynomial Integration Lattices , 2004 .
[2] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[3] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[4] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[5] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..
[6] Harald Niederreiter,et al. Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .
[7] E. Haacke. Sequences , 2005 .
[8] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[9] Dirk Nuyens,et al. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..
[10] Harald Niederreiter,et al. Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .
[11] Harald Niederreiter,et al. Optimal Polynomials for ( t,m,s )-Nets and Numerical Integration of Multivariate Walsh Series , 1996 .
[12] Josef Dick,et al. On Korobov Lattice Rules in Weighted Spaces , 2004, SIAM J. Numer. Anal..
[13] Frances Y. Kuo,et al. Reducing the construction cost of the component-by-component construction of good lattice rules , 2004, Math. Comput..
[14] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[15] Frances Y. Kuo,et al. Constructing Good Lattice Rules with Millions of Points , 2004 .
[16] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[17] Josef Dick,et al. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..
[18] Dirk Nuyens,et al. Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .
[19] Harald Niederreiter,et al. Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..
[20] Ferenc Szidarovszky,et al. Modeling uncertainty : an examination of stochastic theory, methods, and applications , 2002 .
[21] Pierre L'Ecuyer,et al. Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .
[22] G. Larcher. Digital Point Sets: Analysis and Application , 1998 .
[23] Josef Dick,et al. Construction Algorithms for Digital Nets with Low Weighted Star Discrepancy , 2005, SIAM J. Numer. Anal..
[24] Josef Dick,et al. The construction of extensible polynomial lattice rules with small weighted star discrepancy , 2007, Math. Comput..
[25] Harald Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods 2002 , 2004 .
[26] Harald Niederreiter,et al. The Existence of Good Extensible Polynomial Lattice Rules , 2003 .
[27] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[28] Deborah Monique,et al. Authors' addresses , 2004 .
[29] Pierre L'Ecuyer,et al. Randomized Polynomial Lattice Rules for Multivariate Integration and Simulation , 2001, SIAM J. Sci. Comput..
[30] Frances Y. Kuo,et al. Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..
[31] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .