On a Question of Bourgain about Geometric Incidences

Given a set of s points and a set of n2 lines in three-dimensional Euclidean space such that each line is incident to n points but no n lines are coplanar, we show that s = Ω(n11/4). This is the first non-trivial answer to a question recently posed by Jean Bourgain.

[1]  Micha Sharir,et al.  An Improved Bound for Joints in Arrangements of Lines in Space , 2005, Discret. Comput. Geom..

[2]  L. A. Oa,et al.  Crossing Numbers and Hard Erd} os Problems in Discrete Geometry , 1997 .

[3]  Bernard Chazelle,et al.  1 Cuttings , 2005 .

[4]  Thomas Wolff,et al.  Lectures on Harmonic Analysis , 2003 .

[5]  David Haussler,et al.  The complexity of cells in three-dimensional arrangements , 1986, Discret. Math..

[6]  Christian Knauer,et al.  On counting point-hyperplane incidences , 2003, Comput. Geom..

[7]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[8]  Micha Sharir On Joints in Arrangements of Lines in Space and Related Problems , 1994, J. Comb. Theory, Ser. A.

[9]  Csaba D. Tóth,et al.  Distinct Distances in Homogeneous Sets in Euclidean Space , 2006, Discret. Comput. Geom..

[10]  J. Pach Towards a Theory of Geometric Graphs , 2004 .

[11]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[12]  Terence Tao,et al.  On the multilinear restriction and Kakeya conjectures , 2005, math/0509262.

[13]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1990, Comb..

[14]  Micha Sharir,et al.  Lenses in arrangements of pseudo-circles and their applications , 2004, JACM.

[15]  Micha Sharir,et al.  On the Number of Incidences Between Points and Curves , 1998, Combinatorics, Probability and Computing.

[16]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[17]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[18]  Micha Sharir,et al.  Point-line incidences in space , 2002, SCG '02.

[19]  Leonidas J. Guibas,et al.  The complexity of many cells in arrangements of planes and related problems , 1990, Discret. Comput. Geom..

[20]  Sartaj Sahni,et al.  Handbook of Data Structures and Applications , 2004 .

[21]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[22]  Csaba D. Tóth,et al.  Incidences of not-too-degenerate hyperplanes , 2005, Symposium on Computational Geometry.

[23]  József Solymosi,et al.  Distinct distances in homogeneous sets , 2003, SCG '03.

[24]  Boris Aronov,et al.  Counting facets and incidences , 1992, Discret. Comput. Geom..

[25]  Hugo Rossi Prospects in mathematics : Invited talks on the occasion of the 250th anniversary of Princeton University , 1999 .

[26]  Thomas Wolff,et al.  Recent work connected with the Kakeya problem , 2007 .

[27]  VSEVOLOD F. LEV PROBLEMS PRESENTED AT THE WORKSHOP ON RECENT TREND IN ADDITIVE COMBINATORICS COLLECTED BY ERNIE CROOT AND VSEVOLOD F. LEV , .

[28]  László A. Székely,et al.  Crossing Numbers and Hard Erdős Problems in Discrete Geometry , 1997, Combinatorics, Probability and Computing.

[29]  Jean Bourgain,et al.  On the Dimension of Kakeya Sets and Related Maximal Inequalities , 1999 .

[30]  Terence Tao,et al.  A sum-product estimate in finite fields, and applications , 2003, math/0301343.