Pharmacological Induction of Hypothermia

[1]  I. Lizasoain,et al.  Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke , 2012, Neuroscience.

[2]  Ling Wei,et al.  A novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  Wanchun Tang,et al.  Cholecystokinin octapeptide induces hypothermia and improves outcomes in a rat model of cardiopulmonary resuscitation* , 2011, Critical care medicine.

[4]  J. Martínez-Orgado,et al.  The Cannabinoid WIN 55212-2 Mitigates Apoptosis and Mitochondrial Dysfunction After Hypoxia Ischemia , 2011, Neurochemical Research.

[5]  T. Abbruscato,et al.  Opioid receptor agonists reduce brain edema in stroke , 2011, Brain Research.

[6]  J. Martínez-Orgado,et al.  The cannabinoid receptor agonist WIN 55,212-2 reduces the initial cerebral damage after hypoxic–ischemic injury in fetal lambs , 2010, Brain Research.

[7]  L. Xiong,et al.  Neuroprotective effect of WIN 55,212-2 pretreatment against focal cerebral ischemia through activation of extracellular signal-regulated kinases in rats. , 2010, European journal of pharmacology.

[8]  M. Molinari,et al.  The endocannabinoid system: A new entry in remote cell death mechanisms , 2010, Experimental Neurology.

[9]  D. Erlij,et al.  Cannabinoid Agonists Stimulate [3H]GABA Release in the Globus Pallidus of the Rat When Gi Protein-Receptor Coupling Is Restricted: Role of Dopamine D2 Receptors , 2009, Journal of Pharmacology and Experimental Therapeutics.

[10]  V. Marzo,et al.  Targeting the endocannabinoid system: to enhance or reduce? , 2008, Nature Reviews Drug Discovery.

[11]  C. Messier,et al.  Neuroprotection and functional recovery conferred by administration of kappa- and delta1-opioid agonists in a rat model of global ischemia , 2008, Physiology & Behavior.

[12]  D. Grandy,et al.  Novel Thyroxine Derivatives, Thyronamine and 3-iodothyronamine, Induce Transient Hypothermia and Marked Neuroprotection Against Stroke Injury , 2007, Stroke.

[13]  I. Lizasoain,et al.  Characterization of the Neuroprotective Effect of the Cannabinoid Agonist WIN-55212 in an In Vitro Model of Hypoxic-Ischemic Brain Damage in Newborn Rats , 2006, Pediatric Research.

[14]  Ken Mackie,et al.  Cannabinoid receptors as therapeutic targets. , 2006, Annual review of pharmacology and toxicology.

[15]  R. Tallarida,et al.  GABAA receptors modulate cannabinoid-evoked hypothermia , 2004, Pharmacology Biochemistry and Behavior.

[16]  N. Sharif,et al.  Dopamine D2-receptors mediate hypothermia in mice: ICV and IP effects of agonists and antagonists , 1991, Neurochemical Research.

[17]  R. Koehler,et al.  Kappa-Opioid Receptor Selectivity for Ischemic Neuroprotection with BRL 52537 in Rats , 2003, Anesthesia and analgesia.

[18]  T. Sager,et al.  Neuroprotective effect of the neurotensin analogue JMV-449 in a mouse model of permanent middle cerebral ischaemia , 2003, Neuroscience Letters.

[19]  D. Piomelli The molecular logic of endocannabinoid signalling , 2003, Nature Reviews Neuroscience.

[20]  J. Martínez-Orgado,et al.  Neuroprotection by the cannabinoid agonist WIN-55212 in an in vivo newborn rat model of acute severe asphyxia. , 2003, Brain research. Molecular brain research.

[21]  R. Koehler,et al.  Neuroprotective &kgr;-Opioid Receptor Agonist BRL 52537 Attenuates Ischemia-Evoked Nitric Oxide Production In Vivo in Rats , 2003, Stroke.

[22]  M. Adler,et al.  CB1 receptors in the preoptic anterior hypothalamus regulate WIN 55212-2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one]-induced hypothermia. , 2002, The Journal of pharmacology and experimental therapeutics.

[23]  D. Braida,et al.  CP 55,940 protects against ischemia-induced electroencephalographic flattening and hyperlocomotionin Mongolian gerbils , 2000, Neuroscience Letters.

[24]  X. Mao,et al.  CB1 cannabinoid receptor induction in experimental stroke , 2000, Annals of neurology.

[25]  P. Sokoloff,et al.  Role of dopamine D3 receptors in thermoregulation: a reappraisal , 2000, Neuroreport.

[26]  D. Greenberg,et al.  Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats , 2000, Neuroscience Letters.

[27]  R. Reidelberger,et al.  Relative Blood‐brain Barrier Permeabilities of the Cholecystokinin Receptor Antagonists Devazepide and A‐65186 in Rats , 1999, The Journal of pharmacy and pharmacology.

[28]  K. Jin,et al.  Cannabinoids and Neuroprotection in Global and Focal Cerebral Ischemia and in Neuronal Cultures , 1999, The Journal of Neuroscience.

[29]  M. Zarrindast,et al.  Cholecystokinin and morphine-induced hypothermia , 1999, European Neuropsychopharmacology.

[30]  K. Mackie,et al.  Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system , 1998, Neuroscience.

[31]  R. Mechoulam,et al.  Biphasic Effects of Anandamide , 1998, Pharmacology Biochemistry and Behavior.

[32]  P. Salmi,et al.  Dihydrexidine produces hypothermia in rats via activation of dopamine D1 receptors , 1997, Neuroscience Letters.

[33]  C. Oberlander,et al.  The kappa opioid agonist niravoline decreases brain edema in the mouse middle cerebral artery occlusion model of stroke. , 1997, The Journal of pharmacology and experimental therapeutics.

[34]  K. Kawasaki,et al.  CCKB receptor activation protects CA1 neurons from ischemia-induced dysfunction in stroke-prone spontaneously hypertensive rats hippocampal slices , 1995, Neuroscience Letters.

[35]  A. A. Romanovsky,et al.  Cholecystokinin octapeptide (CCK-8) injected into a cerebral ventricle induces a fever-like thermoregulatory response mediated by type B CCK-receptors in the rat , 1994, Brain Research.

[36]  W. C. Lynch,et al.  Neurotensin-induced hypothermia prevents hippocampal neuronal damage and increased locomotor activity in ischemic gerbils , 1993, Brain Research Bulletin.

[37]  D. Graham,et al.  Focal cerebral ischemia in the cat: pretreatment with a kappa-1 opioid receptor agonist, CI-977 , 1993, Brain Research.

[38]  T. Furui Potential protection by a specific kappa-opiate agonist U-50488H against membrane failure in acute ischemic brain. , 1993, Neurologia medico-chirurgica.

[39]  J. Mcculloch,et al.  The effect of the kappa-opioid receptor agonist CI-977 in a rat model of focal cerebral ischaemia , 1992, Brain Research.

[40]  M. Herkenham,et al.  Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  M. Herkenham,et al.  Cannabinoid receptor localization in brain. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Penke,et al.  Cholecystokinin interferes with the thermoregulatory effect of exogenous and endogenous opioids , 1989, Neuropeptides.

[43]  J. Féger,et al.  Comparison of selective and complete inhibitors of enkephalin-degrading enzymes on morphine withdrawal syndrome. , 1989, European journal of pharmacology.

[44]  B. Penke,et al.  Effects of nocturnal intraperitoneal administration of cholecystokinin in rats: simultaneous increase in sleep, increase in EEG slow-wave activity, reduction of motor activity, suppression of eating, and decrease in brain temperature , 1988, Brain Research.

[45]  R. Pullen,et al.  Penetration of diazepam and the non‐peptide CCK antagonist, L‐364, 718, into rat brain , 1987, The Journal of pharmacy and pharmacology.

[46]  J. H. Ludens,et al.  Protection from ischemia-induced cerebral edema in the rat by U-50488H, a kappa opioid receptor agonist , 1987, Brain Research.

[47]  M. Adler,et al.  Body temperature effects of opioids in rats: Intracerebroventricular administration , 1986, Pharmacology Biochemistry and Behavior.

[48]  W. Banks,et al.  Central nervous system effects of peptides, 1980–1985: A cross-listing of peptides and their central actions from the first six years of the journal Peptides , 1986, Peptides.

[49]  M. Skingle,et al.  Effect of β‐funaltrexamine on opioid side‐effects produced by morphine and U‐50, 488H , 1985, The Journal of pharmacy and pharmacology.

[50]  M. Lin,et al.  Hypothalamic neuronal responses to iontophoretic application of morphine in rats , 1984, Neuropharmacology.

[51]  R. Tallarida,et al.  Subclasses of opioids based on body temperature change in rats: acute subcutaneous administration. , 1983, The Journal of pharmacology and experimental therapeutics.

[52]  M. Palkovits,et al.  Cholecystokinin in the nucleus of the solitary tract of the rat: evidence for its vagal origin , 1982, Brain Research.

[53]  G. Uhl DISTRIBUTION OF NEUROTENSIN AND ITS RECEPTOR IN THE CENTRAL NERVOUS SYSTEM , 1982, Annals of the New York Academy of Sciences.

[54]  P. Kalivas,et al.  Neurotensin: Topographical distribution of brain sites involoved in hypothermia and antinociception , 1982, The Journal of comparative neurology.

[55]  C. Rosow,et al.  Opiates and thermoregulation in mice. II. Effects of opiate antagonists. , 1982, The Journal of pharmacology and experimental therapeutics.

[56]  J. Morley,et al.  Intraventricular cholecystokinin-octapeptide produces hypothermia in rats. , 1981, European journal of pharmacology.

[57]  G. Martin,et al.  Hypothermia elicited by the intracerebral microinjection of neurotensin , 1980, Peptides.

[58]  W. G. Clark Changes in body temperature after administration of amino acids, peptides, dopamine, neuroleptics and related agents , 1979, Neuroscience & Biobehavioral Reviews.

[59]  J. Kebabian,et al.  Multiple receptors for dopamine , 1979, Nature.

[60]  W. G. Clark,et al.  HYPERTHERMIC RESPONSES TO CENTRAL AND PERIPHERAL INJECTIONS OF MORPHINE SULPHATE IN THE CAT , 1978, British journal of pharmacology.

[61]  N. Jancsó,et al.  Stimulation and desensitization of the hypothalamic heat‐sensitive structures by capsaicin in rats , 1970, The Journal of physiology.