Predicting ore content throughout a machine learning procedure – An Sn-W enrichment case study

Thanks are due to Prof. M.R. Machado Leite for the use of data on stream sediments from Instituto Geologico e Mineiro, S. Mamede de Infesta (Portugal). C. Iglesias acknowledges the Spanish Ministry of Education, Culture and Sports for FPU 12/02283 grant. This research was carried out under the CERENA/FEUP (Natural resources and Environment Center), Portugal. The author acknowledges the funding provided by the Institute of Earth Sciences (ICT), under contracts UID/ GEO/04683/2013 with FCT (the Portuguese Science and Technology Foundation) and COMPETE POCI-01-0145-FEDER-007690.

[1]  R. Zuo,et al.  Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods , 2017, Natural Resources Research.

[2]  S. Ferrier Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? , 2002, Systematic biology.

[3]  Emmanuel John M. Carranza,et al.  Geocomputation of mineral exploration targets , 2011, Comput. Geosci..

[4]  R. Zuo Machine Learning of Mineralization-Related Geochemical Anomalies: A Review of Potential Methods , 2017, Natural Resources Research.

[5]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[6]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[7]  Yongliang Chen,et al.  Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data , 2017, Geochemistry: Exploration, Environment, Analysis.

[8]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[9]  O. Mangasarian,et al.  Robust linear programming discrimination of two linearly inseparable sets , 1992 .

[10]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[11]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[12]  Saro Lee,et al.  Application of Artificial Neural Network for Gold–Silver Deposits Potential Mapping: A Case Study of Korea , 2010 .

[13]  Cristiano Ballabio,et al.  Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy , 2012, Mathematical Geosciences.

[14]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[15]  G. G. Moisen,et al.  Classification and regression trees , 2008 .

[16]  Sebastien Strebelle,et al.  Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics , 2002 .

[17]  Yongliang Chen,et al.  Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly , 2014 .

[18]  Lutgarde M. C. Buydens,et al.  Using support vector machines for time series prediction , 2003 .

[19]  B. McGill,et al.  Testing the predictive performance of distribution models , 2013 .

[20]  Sukumar Bandopadhyay,et al.  An Objective Analysis of Support Vector Machine Based Classification for Remote Sensing , 2008 .

[21]  Emmanuel John M. Carranza,et al.  Artificial Neural Networks for Mineral-Potential Mapping: A Case Study from Aravalli Province, Western India , 2003 .

[22]  M. Albuquerque,et al.  Spatial risk assessment related to abandoned mining activities: an environmental management tool , 2014, Environmental Earth Sciences.

[23]  Martin Charlton,et al.  The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets , 2010 .

[24]  V. Rodriguez-Galiano,et al.  Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines , 2015 .

[25]  Kui-Feng Yang,et al.  The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis , 2016 .

[26]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[27]  Marcin Korzeń,et al.  Expert system for monitoring the tributyltin content in inland water samples , 2015 .

[28]  R. Fletcher Practical Methods of Optimization , 1988 .

[29]  S. D. Brown,et al.  Decision Tree Modeling , 2009 .

[30]  F. Corfu,et al.  The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal) , 2009 .

[31]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[32]  P. J. García Nieto,et al.  Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain , 2013, Water Resources Management.

[33]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[34]  Nello Cristianini,et al.  Support vector machines , 2009 .

[35]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[36]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[37]  Carlos Roberto de Souza Filho,et al.  Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil , 2009, Comput. Geosci..

[38]  T. Jiang,et al.  Mineral association and graphite inclusions in nephrite jade from Liaoning, northeast China: Implications for metamorphic conditions and ore genesis , 2019, Geoscience Frontiers.

[39]  X. Mo,et al.  Discriminating characters of ore-forming intrusions in the super-large Chalukou porphyry Mo deposit, NE China , 2018, Geoscience Frontiers.

[40]  A. Prasad,et al.  PREDICTING ABUNDANCE OF 80 TREE SPECIES FOLLOWING CLIMATE CHANGE IN THE EASTERN UNITED STATES , 1998 .

[41]  Arthur Getis,et al.  Point pattern analysis , 1985 .

[42]  Shouyu Chen,et al.  Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China , 2016 .

[43]  J. Svenning,et al.  Potential impact of climatic change on the distribution of forest herbs in Europe , 2004 .

[44]  Brandon Bennett,et al.  The Assessment of Machine Learning Model Performance for Predicting Alluvial Deposits Distribution , 2014, Complex Adaptive Systems.