Optimal linear filtering theory and radiative transfer: Comparisons and interconnections

[1]  John L. Casti,et al.  A new initial-value method for on-line filtering and estimation (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[2]  G. Wing On Certain Fredholm Integral Equations Reducible to Initial Value Problems , 1967 .

[3]  Robert E. Kalaba,et al.  An Initial-value Method for Fredholm Integral Equations with Degenerate Kernels. , 1967 .

[4]  Richard Bellman,et al.  NUMERICAL RESULTS FOR CHANDRASEKHAR'S X AND Y FUNCTIONS OF RADIATIVE TRANSFER, , 1966 .

[5]  Richard Bellman,et al.  NUMERICAL RESULTS FOR THE AUXILIARY EQUATION OF RADIATIVE TRANSFER , 1966 .

[6]  Robert E. Kalaba,et al.  Invariant Imbedding and a Reformulation of the Internal Intensity Problem in Radiative Transfer Theory , 1966 .

[7]  R. Bellman,et al.  Invariant Imbedding and Radiative Transfer in Slabs of Finite Thickness. , 1966 .

[8]  R. Bellman,et al.  INVARIANT IMBEDDING AND A REFORMULATION OF THE INTERNAL INTENSITY PROBLEM IN TRANSPORT THEORY , 1965 .

[9]  D. Naidu,et al.  Optimal Control Systems , 2018 .

[10]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[11]  V. Sobolev,et al.  A treatise on radiative transfer. , 1963 .

[12]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[13]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[14]  J. Doob Stochastic processes , 1953 .

[15]  S. Chandrasekhar On the Radiative Equilibrium of a Stellar Atmosphere. XIV. , 1947 .