A dual-modal retinal imaging system with adaptive optics.

An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.

[1]  Jessica I. W. Morgan,et al.  In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. , 2009, Investigative ophthalmology & visual science.

[2]  Austin Roorda,et al.  Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy , 2005 .

[3]  Austin Roorda,et al.  Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy. , 2006, Optics express.

[4]  C. Hitzenberger,et al.  Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction. , 2007, Optics express.

[5]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[6]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[7]  Ravi S. Jonnal,et al.  Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics , 2011, Biomedical optics express.

[8]  A. Dubra,et al.  Reflective afocal broadband adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[9]  Steven M. Jones,et al.  High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. , 2006, Optics express.

[10]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[11]  Maciej Wojtkowski,et al.  Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source , 2005 .

[12]  Bernard P. Gee,et al.  In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. , 2006, Optics express.

[13]  A C Bird,et al.  Confocal imaging of the fundus using a scanning laser ophthalmoscope. , 1992, The British journal of ophthalmology.

[14]  Joseph A Izatt,et al.  Synthetic wavelength based phase unwrapping in spectral domain optical coherence tomography. , 2009, Optics express.

[15]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3 D retinal in vivo imaging , 2005 .

[16]  R. Spaide,et al.  Enhanced depth imaging spectral-domain optical coherence tomography. , 2008, American journal of ophthalmology.

[17]  Ruikang K. Wang,et al.  High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second , 2011, Biomedical optics express.

[18]  R. Webb,et al.  Confocal scanning laser ophthalmoscope. , 1987, Applied optics.

[19]  Yifan Jian,et al.  Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography , 2011, Biomedical optics express.

[20]  Robert J Zawadzki,et al.  Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Harald Sattmann,et al.  In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level. , 2010, Optics express.

[22]  Angelika Unterhuber,et al.  Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. , 2008, Optics express.

[23]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[24]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[25]  C. Curcio,et al.  ANATOMICAL CORRELATES TO THE BANDS SEEN IN THE OUTER RETINA BY OPTICAL COHERENCE TOMOGRAPHY: Literature Review and Model , 2011, Retina.

[26]  Donald T. Miller,et al.  In vivo functional imaging of human cone photoreceptors. , 2007, Optics express.

[27]  Scot S. Olivier,et al.  Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging , 2011, Biomedical optics express.

[28]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Stefan Kray,et al.  Simultaneous dual-band ultra-high resolution optical coherence tomography. , 2007, Optics express.

[30]  Ashavini M. Pavaskar,et al.  Spatial and temporal variation of rod photoreceptor reflectance in the human retina , 2011, Biomedical optics express.

[31]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[32]  C. Dainty,et al.  Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. , 2006, Optics express.

[33]  Daniel X. Hammer,et al.  High resolution multimodal clinical ophthalmic imaging system , 2010, Optics express.

[34]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[35]  David H Sliney,et al.  Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Phillip Bedggood,et al.  Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging. , 2008, Journal of biomedical optics.

[37]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[38]  R. Zawadzki,et al.  Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography. , 2008, Optics letters.

[39]  Austin Roorda,et al.  Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope. , 2006, Optics express.

[40]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[41]  Geunyoung Yoon,et al.  Micrometer axial resolution OCT for corneal imaging , 2011, Biomedical optics express.

[42]  A. Roorda,et al.  MEMS-based adaptive optics scanning laser ophthalmoscopy. , 2006, Optics letters.

[43]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[44]  Siddharth Poonja,et al.  MEMS-based adaptive optics scanning laser ophthalmoscopy , 2006 .

[45]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[46]  A. Roorda,et al.  Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[47]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[48]  R. Webb,et al.  Flying spot TV ophthalmoscope. , 1980, Applied optics.

[49]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[50]  Robert J Zawadzki,et al.  Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. , 2008, Optics express.

[51]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[52]  Robert J Zawadzki,et al.  Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy. , 2013, Investigative ophthalmology & visual science.

[53]  Austin Roorda,et al.  Applications of Adaptive Optics Scanning Laser Ophthalmoscopy , 2010, Optometry and vision science : official publication of the American Academy of Optometry.

[54]  Richard F. Spaide,et al.  Questioning optical coherence tomography. , 2012, Ophthalmology.

[55]  Austin Roorda,et al.  Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy , 2010, Optics Express.

[56]  Daniel X Hammer,et al.  Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.