Palladium Complexes of Carbazole-Based Chalcogenaisophlorins: Synthesis, Structure, and Solid-State NIR Absorption Spectra.

Annulation reactions of the butadiyne-bridged carbazole dimer 1 produced carbazole-based chalcogenaisophlorins 2-4, which were transformed into the corresponding palladium complexes 2Pd-4Pd. The structures were characterized by NMR spectroscopy and X-ray diffraction analysis. Metallation fixed the structures which displayed weak antiaromatic character derived from the 20π isophlorin framework. These complexes showed weak near-infrared (NIR) absorption typical for antiaromatic porphyrinoids in solution. In addition, 2Pd and 3Pd showed relatively strong solid-state NIR absorption. X-ray diffraction analyses of 2Pd and 3Pd revealed trimeric and dimeric stacked layered structures, respectively, and DFT calculations suggest that the solid-state NIR absorption is ascribed to intermolecular charge transfer.

[1]  T. Ema,et al.  Synthesis of carbazole-based BODIPY dimers showing red fluorescence in the solid state. , 2017, Organic & biomolecular chemistry.

[2]  T. Ema,et al.  Carbazole-based BODIPYs with ethynyl substituents at the boron center: solid-state excimer fluorescence in the VIS/NIR region. , 2017, Organic & biomolecular chemistry.

[3]  Vijayendra S. Shetti,et al.  Heteroatom-Containing Porphyrin Analogues. , 2017, Chemical reviews.

[4]  V. Anand,et al.  Isophlorinoids: The Antiaromatic Congeners of Porphyrinoids. , 2017, Chemical reviews.

[5]  Y. Matano Synthesis of Aza-, Oxa-, and Thiaporphyrins and Related Compounds. , 2017, Chemical reviews.

[6]  S. Irle,et al.  Stacked antiaromatic porphyrins , 2016, Nature Communications.

[7]  T. Ema,et al.  Intramolecular Electronic Coupling in the Thiophene-Bridged Carbazole-Based Diporphyrin. , 2016, Organic letters.

[8]  Dongho Kim,et al.  Double Ring Expansion from an Aromatic [18]Porphyrin(1.1.1.1) to an Antiaromatic [20]Porphyrin(2.1.2.1). , 2016, Angewandte Chemie.

[9]  V. Anand,et al.  Controlled Core-Modification of a Porphyrin into an Antiaromatic Isophlorin. , 2016, Angewandte Chemie.

[10]  T. Ema,et al.  Color-Tunable Solid-State Fluorescence Emission from Carbazole-Based BODIPYs. , 2016, Chemistry.

[11]  Dongho Kim,et al.  Synthesis of Di-peri-dinaphthoporphyrins by PtCl2 -Mediated Cyclization of Quinodimethane-type Porphyrins. , 2016, Angewandte Chemie.

[12]  N. Yoshioka,et al.  Effects of cyano, ethynyl and ethylenedioxy groups on the photophysical properties of carbazole-based porphyrins. , 2015, Organic & biomolecular chemistry.

[13]  T. Ema,et al.  Carbazole-Based Boron Dipyrromethenes (BODIPYs): Facile Synthesis, Structures, and Fine-Tunable Optical Properties. , 2015, Organic letters.

[14]  D. Seferos,et al.  Efficient halogen photoelimination from dibromo, dichloro and difluoro tellurophenes. , 2015, Dalton transactions.

[15]  Bao Zhang,et al.  Doubly N-confused isophlorin: synthesis, structure and copper coordination. , 2014, Chemical communications.

[16]  N. Yoshioka,et al.  Synthesis of carbazole-based hetero-core-modified porphyrins. , 2014, Organic & biomolecular chemistry.

[17]  N. Yoshioka,et al.  Effective π-extension of carbazole-based thiaporphyrins by peripheral phenylethynyl substituents. , 2013, Organic letters.

[18]  K. Yoshizawa,et al.  Multiply-fused porphyrins--effects of extended π-conjugation on the optical and electrochemical properties. , 2013, Chemical communications.

[19]  Chihiro Maeda,et al.  Synthesis and characterization of carbazole-based expanded thiaporphyrins. , 2013, Chemistry.

[20]  N. Yoshioka,et al.  Synthesis of carbazole-based selenaporphyrin via annulation. , 2013, Organic letters.

[21]  N. Kobayashi,et al.  Synthesis, optical properties, and electronic structures of fully core-modified porphyrin dications and isophlorins. , 2012, Chemistry.

[22]  K. Müllen,et al.  A carbazole-containing porphyrinoid: synthesis and oxidation to the porphyrin-state. , 2012, Chemical communications.

[23]  Tomohiro Ito,et al.  Gram-scale synthesis of nickel(II) norcorrole: the smallest antiaromatic porphyrinoid. , 2012, Angewandte Chemie.

[24]  N. Yoshioka,et al.  Peripherally ethynylated carbazole-based core-modified porphyrins. , 2012, Organic & biomolecular chemistry.

[25]  Ashlee A. Jahnke,et al.  Tellurophenes with delocalized π-systems and their extended valence adducts. , 2012, Journal of the American Chemical Society.

[26]  Anilesh Kumar,et al.  Ruthenium complexes of thiaporphyrin and dithiaporphyrin. , 2011, Inorganic chemistry.

[27]  T. Vaid A porphyrin with a C═C unit at its center. , 2011, Journal of the American Chemical Society.

[28]  Jong Min Lim,et al.  Synthesis of carbazole-containing porphyrinoids by a multiple annulation strategy: a core-modified and π-expanded porphyrin. , 2011, Angewandte Chemie.

[29]  K. Müllen,et al.  A porphyrin-related macrocycle from carbazole and pyridine building blocks: synthesis and metal coordination. , 2011, Chemical communications.

[30]  H. Nakano,et al.  Redox-coupled complexation of 23-phospha-21-thiaporphyrin with group 10 metals: a convenient access to stable core-modified isophlorin-metal complexes. , 2008, Journal of the American Chemical Society.

[31]  L. Szterenberg,et al.  Phosphorus complexes of N-fused porphyrin and its reduced derivatives: new isomers of porphyrin stabilized via coordination. , 2008, Inorganic chemistry.

[32]  V. Anand,et al.  Planar meso pentafluorophenyl core modified isophlorins. , 2008, Journal of the American Chemical Society.

[33]  H. Nakano,et al.  Monophosphaporphyrins: oxidative pi-extension at the peripherally fused carbocycle of the phosphaporphyrin ring. , 2008, Organic letters.

[34]  T. Vaid,et al.  Reversible oxidation state change in germanium(tetraphenylporphyrin) induced by a dative ligand: aromatic GeII(TPP) and antiaromatic GeIV(TPP)(pyridine)2. , 2007, Journal of the American Chemical Society.

[35]  Chao Liu,et al.  Synthesis and Reactions of 20 π-Electron β-Tetrakis(trifluoromethyl)-meso-tetraphenylporphyrins , 2007 .

[36]  H. Nakano,et al.  Synthesis of a phosphorus-containing hybrid porphyrin. , 2006, Organic letters.

[37]  T. Vaid,et al.  An antiaromatic porphyrin complex: tetraphenylporphyrinato(silicon)(L)2 (L=THF or pyridine). , 2005, Journal of the American Chemical Society.

[38]  V. Lynch,et al.  Calix[4]pyrrole[2]carbazole: a new kind of expanded calixpyrrole. , 2004, Journal of the American Chemical Society.

[39]  A. Osuka,et al.  Confusion, inversion, and creation--a new spring from porphyrin chemistry. , 2002, Chemical communications.

[40]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[41]  S. Peng,et al.  Structure and characterization of the first metal complex of dithiaporphyrin: Ru(S(2)TTP)Cl(2). , 2001, Inorganic Chemistry.

[42]  SetsuneJun-ichiro,et al.  Photooxygenation of N21,N22-Bridged Isophlorin to 19-Benzoylisobilirubin , 2001 .

[43]  SetsuneJun-ichiro,et al.  Photoreduction of N,N′-Bridged Porphyrins to 20π Antiaromatic Isophlorins , 1999 .

[44]  David Dolphin,et al.  Expanded Porphyrins and Their Heterologs. , 1997, Chemical reviews.

[45]  E. Vogel,et al.  Isophlorine: Moleküle am Schnittpunkt von Porphyrin‐ und Annulen‐Chemie , 1991 .

[46]  E. Vogel,et al.  Isophlorins: Molecules at the Crossroads of Porphyrin and Annulene Chemistry , 1991 .