Manipulation of the magnetron orbit of a positron cloud in a Penning trap

We describe a simple and versatile method to manipulate the amplitude of the magnetron orbit of ions stored in a Penning trap, applied here to a cloud of low energy positrons. By applying a pulsed voltage to a split electrode in the trap, which is normally used for rotating wall compression of the particles, the size of the magnetron orbit can be changed at will. The modified orbit has been shown to be stable for many magnetron periods. The technique could find use in applications which require off-axis ejection of particles, for instance in the filling of arrays of traps for multicell positron storage.

[1]  C. Surko,et al.  Chapter 5: Accumulation, Storage and Manipulation of Large Numbers of Positrons in Traps II -- Selected Topics , 2014 .

[2]  J. Wurtele,et al.  Resonant quantum transitions in trapped antihydrogen atoms , 2012, Nature.

[3]  M. Charlton,et al.  The behaviour of positron clouds in the single-particle regime under the influence of rotating wall electric fields , 2012 .

[4]  Berkeley,et al.  Confinement of antihydrogen for 1,000 seconds , 2011, 1104.4982.

[5]  M. Charlton,et al.  Compression of positron clouds in the independent particle regime. , 2011, Physical review letters.

[6]  Y. Kanai,et al.  Synthesis of cold antihydrogen in a cusp trap. , 2010, Physical review letters.

[7]  M. Lund,et al.  Target structure induced suppression of the ionization cross section for very low energy antiproton-hydrogen collisions. , 2010, Physical review letters.

[8]  A. Mills,et al.  Production of a fully spin-polarized ensemble of positronium atoms. , 2010, Physical review letters.

[9]  R. G. Greaves,et al.  Compression of trapped positrons in a single particle regime by a rotating electric field , 2008 .

[10]  J. Wurtele,et al.  Compression of antiproton clouds for antihydrogen trapping. , 2008, Physical review letters.

[11]  D. Horvath,et al.  Radial compression of an antiproton cloud for production of intense antiproton beams. , 2008, Physical review letters.

[12]  T. M. O'Neil,et al.  High-density fixed point for radially compressed single-component plasmas. , 2007, Physical review letters.

[13]  A. Mills,et al.  The production of molecular positronium , 2007, Nature.

[14]  A. Fontana,et al.  Positron plasma control techniques for the production of cold antihydrogen , 2007 .

[15]  Manhoi Hur,et al.  Modification of trapping potential by inverted sidekick electrode voltage during detection to extend time-domain signal duration for significantly enhanced fourier transform ion cyclotron resonance mass resolution. , 2007, Analytical chemistry.

[16]  D. Beddows,et al.  Design and operation of a two-stage positron accumulator , 2006 .

[17]  C. Surko,et al.  Torque-balanced high-density steady states of single-component plasmas. , 2005, Physical review letters.

[18]  A. Fontana,et al.  New source of dense, cryogenic positron plasmas. , 2005, Physical review letters.

[19]  M. Charlton,et al.  The route to ultra-low energy antihydrogen , 2004 .

[20]  Zheng Ouyang,et al.  Preparing Protein Microarrays by Soft-Landing of Mass-Selected Ions , 2003, Science.

[21]  E. A. Hessels,et al.  Driven production of cold antihydrogen and the first measured distribution of antihydrogen states. , 2002, Physical review letters.

[22]  A. Fontana,et al.  Production and detection of cold antihydrogen atoms , 2002, Nature.

[23]  J. Fajans,et al.  Decay of the diocotron rotation and transport in a new low-density asymmetry-dominated regime. , 2002, Physical review letters.

[24]  R. Griffey,et al.  m/z‐Selective infrared multiphoton dissociation in a Penning trap using sidekick trapping and an rf‐tickle pulse , 2001 .

[25]  A. Marshall Milestones in fourier transform ion cyclotron resonance mass spectrometry technique development , 2000 .

[26]  Greaves,et al.  Inward transport and compression of a positron plasma by a rotating electric field , 2000, Physical review letters.

[27]  J. Fajans,et al.  Autoresonant (Nonstationary) Excitation of the Diocotron Mode in Non-neutral Plasmas , 1999 .

[28]  T. M. O'Neil,et al.  Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states) , 1999 .

[29]  C. Driscoll,et al.  ROTATING FIELD CONFINEMENT OF PURE ELECTRON PLASMAS USING TRIVELPIECE-GOULD MODES , 1998 .

[30]  K. Fine,et al.  The finite length diocotron mode , 1998 .

[31]  E. M. Hollmann,et al.  STEADY-STATE CONFINEMENT OF NON-NEUTRAL PLASMAS BY ROTATING ELECTRIC FIELDS , 1997 .

[32]  Wurtele,et al.  Experimental breaking of an adiabatic invariant. , 1993, Physical review letters.

[33]  Murphy,et al.  Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[34]  A. Hyatt,et al.  Parallel energy analyzer for pure electron plasma devices , 1992 .

[35]  Lowell S. Brown,et al.  Geonium theory: Physics of a single electron or ion in a Penning trap , 1986 .