Design Techniques for High-Resolution Continuous-Time Delta–Sigma Converters With Low In-Band Noise Spectral Density

We present design considerations for CT<inline-formula> <tex-math notation="LaTeX">$\!\Delta \!\Sigma $ </tex-math></inline-formula>Ms that attempt to achieve high resolution (16+ bits) over a wide bandwidth (>200 kHz), resulting in a low in-band noise spectral density. The main challenges in such designs are parasitic resistance in the reference path, inter-symbol interference (ISI) in the feedback-digital-to-analog converter (DAC) waveform, and flicker noise of the input operational transconductance amplifier (OTA). We introduce the virtual-ground-switched resistor DAC as a way to achieve low distortion by addressing parasitic resistance in the reference path and reducing the effects of ISI. Flicker noise is reduced by chopping the first stage of the input OTA. Chopping artifacts and clock jitter sensitivity are reduced by using a three-stage OTA and finite impulse response (FIR) feedback. These techniques are applied to the design of a 250 kHz bandwidth CT<inline-formula> <tex-math notation="LaTeX">$\!\Delta \!\Sigma \text{M}$ </tex-math></inline-formula> targeting 108 dB signal-to-noise-and-distortion-ratio (SNDR) in a 180 nm CMOS process. The fabricated prototype, which operates at 32 MS/s, achieves 105.3/108.1 dB SNDR/signal-to-noise-ratio (SNR) and consumes 24 mW. The Schreier SNDR figure of merit (FoM) is 175.5 dB.

[1]  Sejun Kim,et al.  A 2.4mW, 111dB SNR continuous-time ΣΔ ADC with a three-level DEM technique , 2017, 2017 IEEE Custom Integrated Circuits Conference (CICC).

[2]  R. Baird,et al.  Linearity enhancement of multibit /spl Delta//spl Sigma/ A/D and D/A converters using data weighted averaging , 1995 .

[3]  Debasish Behera,et al.  A 16MHz BW 75dB DR CT ΔΣ ADC compensated for more than one cycle excess loop delay , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[4]  Shanthi Pavan,et al.  Analysis of Chopped Integrators, and Its Application to Continuous-Time Delta-Sigma Modulator Design , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Andrea Baschirotto,et al.  A 106 dB A-Weighted DR Low-Power Continuous-Time $\Sigma \Delta $ Modulator for MEMS Microphones , 2016, IEEE Journal of Solid-State Circuits.

[6]  Shanthi Pavan,et al.  A 20 MHz Bandwidth Continuous-Time Delta-Sigma ADC Achieving 82.1 dB SNDR and > 00 dB SFDR Using a Time-Interleaved Virtual-Ground-Switched FIR Feedback DAC , 2020, 2020 IEEE Custom Integrated Circuits Conference (CICC).

[7]  Shanthi Pavan,et al.  Unified Analysis, Modeling, and Simulation of Chopping Artifacts in Continuous-Time Delta-Sigma Modulators , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Howard Tang,et al.  A 1 V 103 dB 3rd-Order Audio Continuous-Time $\Delta \Sigma $ ADC With Enhanced Noise Shaping in 65 nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[9]  Kofi Makinwa,et al.  A Low Power Continuous-Time Zoom ADC for Audio Applications , 2019, 2019 Symposium on VLSI Circuits.

[10]  Tai-Haur Kuo,et al.  An improved technique for reducing baseband tones in sigma-delta modulators employing data weighted averaging algorithm without adding dither , 1999 .

[11]  Shanthi Pavan,et al.  A Power Optimized Continuous-Time $\Delta \Sigma $ ADC for Audio Applications , 2008, IEEE Journal of Solid-State Circuits.

[12]  Piero Malcovati,et al.  A 106 dB A-Weighted DR Low-Power Continuous-Time ΣΔ Modulator for MEMS Microphones , 2016, IEEE J. Solid State Circuits.

[13]  Sujith Billa,et al.  Analysis and Design of Continuous-Time Delta–Sigma Converters Incorporating Chopping , 2017, IEEE Journal of Solid-State Circuits.

[14]  Mounir Fares,et al.  Digital Approaches to ISI-Mitigation in High-Resolution Oversampled Multi-Level D/A Converters , 2011, IEEE Journal of Solid-State Circuits.

[15]  Gabor C. Temes,et al.  The Delta¿¿¿Sigma Toolbox , 2017 .

[16]  Thomas Blon,et al.  A 20-mW 640-MHz CMOS continuous-time ΣΔ ADC with 20-MHz signal bandwidth, 80-dB dynamic range and 12-bit ENOB , 2006 .

[17]  Debasish Behera,et al.  A 16 MHz BW 75 dB DR CT $\Delta\Sigma$ ADC Compensated for More Than One Cycle Excess Loop Delay , 2012, IEEE Journal of Solid-State Circuits.

[18]  Chun-Cheng Liu,et al.  A 0.022 mm$^{{2}}$ 98.5 dB SNDR Hybrid Audio $\Delta \Sigma$ Modulator With Digital ELD Compensation in 28 nm CMOS , 2015, IEEE Journal of Solid-State Circuits.

[19]  David Lamb,et al.  A 97.3 dB SNR, 600 kHz BW, 31mW multibit continuous time ΔΣ ADC , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[20]  Mohammed S. Ghausi,et al.  Introduction to distributed-parameter networks: With application to integrated circuits , 1977 .

[21]  Shanthi Pavan Systematic Design Centering of Continuous Time Oversampling Converters , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  Kofi A. A. Makinwa,et al.  A Dynamic Zoom ADC With 109-dB DR for Audio Applications , 2017, IEEE Journal of Solid-State Circuits.

[23]  Shanthi Pavan Continuous-Time Delta-Sigma Modulator Design Using the Method of Moments , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .