Nanopillar lasers directly grown on silicon with heterostructure surface passivation.

Single-crystalline wurtzite InGaAs/InGaP nanopillars directly grown on a lattice-mismatched silicon substrate are demonstrated. The nanopillar growth is in a core-shell manner and gives a sharp, defect-free heterostructure interface. The InGaP shell provides excellent surface passivation effect for InGaAs nanopillars, as attested by 50-times stronger photoluminescence intensities and 5-times greater enhancements in the carrier recombination lifetimes, compared to the unpassivated ones. A record value of 16.8% internal quantum efficiency for InGaAs-based nanopillars was attained with a 50-nm-thick InGaP passivation layer. A room-temperature optically pumped laser was achieved from single, as-grown InGaAs nanopillars on silicon with a record-low threshold. Superior material qualities of these InGaP-passivated InGaAs nanopillars indicate the possibility of realizing high-performance optoelectronic devices for photovoltaics, optical communication, semiconductor nanophotonics, and heterogeneous integration of III-V materials on silicon.

[1]  J. Picqué,et al.  Frequency‐controlled cw tunable GaAs laser , 1975 .

[2]  R. J. Nelson,et al.  Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs , 1978 .

[3]  Chikara Amano,et al.  The effect of oxygen on the properties of AlGaAs solar cells grown by molecular‐beam epitaxy , 1988 .

[4]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[5]  Chien-Ping Lee,et al.  INFLUENCE OF OXYGEN ON THE PERFORMANCE OF GAAS/ALGAAS QUANTUM WELL INFRARED PHOTODETECTORS , 1994 .

[6]  K. D. Zylan,et al.  Article , 1996, Physiology & Behavior.

[7]  Matthew Gibson,et al.  GaAs/AlGaAs photonics integrated circuit for optical beamforming in phased-array communication antennas , 2000, SPIE Optics + Photonics.

[8]  Tsunemasa Taguchi,et al.  Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes , 2003 .

[9]  R. Urata,et al.  Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches , 2004, IEEE Journal of Quantum Electronics.

[10]  C. Jagadish,et al.  Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs , 2006, cond-mat/0610567.

[11]  L. Samuelson,et al.  Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.

[12]  Takashi Fukui,et al.  Single GaAs/GaAsP coaxial core-shell nanowire lasers. , 2009, Nano letters.

[13]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[14]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.

[15]  C. Chang-Hasnain,et al.  GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate. , 2011, Nano letters.

[16]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[17]  O. Brandt,et al.  Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. , 2011, Nano letters.

[18]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.

[19]  Constance J. Chang-Hasnain Nanolasers Grown on Silicon , 2012 .

[20]  Connie Chang-Hasnain,et al.  Nanolasers grown on silicon-based MOSFETs. , 2012, Optics express.

[21]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[22]  GaAs nanopillar-array solar cells employing in situ surface passivation , 2013, Nature communications.

[23]  G. Abstreiter,et al.  Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature , 2013, Nature Communications.

[24]  C. Chang-Hasnain,et al.  Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars , 2013 .

[25]  C. Chang-Hasnain,et al.  Unconventional growth mechanism for monolithic integration of III-V on silicon. , 2013, ACS nano.

[26]  C. Chang-Hasnain,et al.  High quality InGaP micropillars directly grown on silicon , 2013, 2013 IEEE Photonics Society Summer Topical Meeting Series.

[27]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[28]  P. Bhattacharya,et al.  Carrier lifetimes in green emitting InGaN/GaN disks-in-nanowire and characteristics of green light emitting diodes , 2013 .

[29]  Huiyun Liu,et al.  Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon , 2013, Nature Communications.

[30]  Yangsen Kang,et al.  High-efficiency nanostructured window GaAs solar cells. , 2013, Nano letters.

[31]  T. Fukui,et al.  GaAs/InGaP Core–Multishell Nanowire-Array-Based Solar Cells , 2013 .

[32]  Connie J. Chang-Hasnain,et al.  High-quality InP nanoneedles grown on silicon , 2013 .