On the validity of "A proof that the discrete singular convolution (DSC)/Lagrange-distributed approximation function (LDAF) method is inferior to high order finite differences"

A few families of counterexamples are provided to "A proof that the discrete singular convolution (DSC)/Lagrange-distributed approximation function (LDAF) method is inferior to high order finite differences", Journal of Computational Physics, 214, 538-549 (2006).

[1]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[2]  John P. Boyd,et al.  Sum-accelerated pseudospectral methods: the Euler-accelerated sinc algorithm , 1991 .

[3]  Y. C. Zhou,et al.  High resolution conjugate filters for the simulation of flows , 2001 .

[4]  Bengt Fornberg,et al.  Classroom Note: Calculation of Weights in Finite Difference Formulas , 1998, SIAM Rev..

[5]  J. Boyd Sum-accelerated pseudospectral methods: Finite differences and sech-weighted differences , 1994 .

[6]  Omar A. Sharafeddin,et al.  Analytic banded approximation for the discretized free propagator , 1991 .

[7]  Liwen Qian On the regularized Whittaker-Kotel'nikov-Shannon sampling formula , 2002 .

[8]  Robin S. Langley,et al.  A review of current analysis capabilities applicable to the high frequency vibration prediction of aerospace structures , 1998, The Aeronautical Journal (1968).

[9]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[10]  Shan Zhao,et al.  Numerical solution of the Helmholtz equation with high wavenumbers , 2004 .

[11]  Yang Xiang,et al.  A NOVEL APPROACH FOR THE ANALYSIS OF HIGH-FREQUENCY VIBRATIONS , 2002 .

[12]  L. Campbell Sampling Theorem for the Fourier Transform of a Distribution with Bounded Support , 1968 .

[13]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[14]  Yang Xiang,et al.  Discrete singular convolution for the prediction of high frequency vibration of plates , 2002 .

[15]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[16]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[17]  John P. Boyd A proof that the discrete singular convolution (DSC)/Lagrange-distributed approximating function (LDAF) method is inferior to high order finite differences , 2006, J. Comput. Phys..

[18]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[19]  Björn Engquist,et al.  High-Frequency Wave Propagation by the Segment Projection Method , 2002 .

[20]  O. C. Zienkiewicz,et al.  Achievements and some unsolved problems of the finite element method , 2000 .

[21]  Yang Xiang,et al.  Discrete singular convolution and its application to the analysis of plates with internal supports. Part 2: Applications , 2002 .

[22]  Shock‐capturing with natural high‐frequency oscillations , 2001, math/0110029.

[23]  Maria Theis,et al.  Über eine Interplationsformel von de la Vallée Poussin , 1919 .

[24]  Yang Xiang,et al.  Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm , 2002 .

[25]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .

[26]  Guo-Wei Wei,et al.  DSC‐Ritz method for high‐mode frequency analysis of thick shallow shells , 2005 .

[27]  I. Babuska,et al.  Pollution Error in the h-Version of the Finite Element Method and the Local Quality of the Recovered Derivatives. , 1997 .