The kink phenomenon in Fejér and Clenshaw–Curtis quadrature

The Fejér and Clenshaw–Curtis rules for numerical integration exhibit a curious phenomenon when applied to certain analytic functions. When N (the number of points in the integration rule) increases, the error does not decay to zero evenly but does so in two distinct stages. For N less than a critical value, the error behaves like $$O(\varrho^{-2N})$$, where $$\varrho$$ is a constant greater than 1. For these values of N the accuracy of both the Fejér and Clenshaw–Curtis rules is almost indistinguishable from that of the more celebrated Gauss–Legendre quadrature rule. For larger N, however, the error decreases at the rate $$O(\varrho^{-N})$$, i.e., only half as fast as before. Convergence curves typically display a kink where the convergence rate cuts in half. In this paper we derive explicit as well as asymptotic error formulas that provide a complete description of this phenomenon.

[1]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[2]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[3]  A. Stroud,et al.  Approximate Calculation of Integrals , 1962 .

[4]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[5]  M. Chawla Error estimates for the Clenshaw-Curtis quadrature , 1968 .

[6]  M. Mori,et al.  Estimation of errors in the numerical quadrature of analytic functions , 1971 .

[7]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[8]  W. Gautschi A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .

[9]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[10]  P. Favati,et al.  Bounds on the error of fejer and clenshaw-curtis type quadrature for analytic functions , 1993 .

[11]  A. Fokas,et al.  Complex Variables: Introduction and Applications , 1997 .

[12]  K. Petras Gaussian Versus Optimal Integration of Analytic Functions , 1998 .

[13]  Rudolf Scherer,et al.  Estimating quadrature errors for analytic functions using kernel representations and biorthogonal systems , 2000, Numerische Mathematik.

[14]  Knut Petras,et al.  On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..

[15]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[16]  Athanassios S. Fokas,et al.  Complex Variables: Contents , 2003 .

[17]  N. Lord Complex variables: introduction and applications (2nd edn), by M. J. Ablowitz and A. S. Fokas. Pp. 647. £18.95. 2003. ISBN 0 521 53429 1 (Cambridge University Press). , 2004 .

[18]  J. A. C. Weideman,et al.  Quadrature rules based on partial fraction expansions , 2000, Numerical Algorithms.

[19]  J. López,et al.  Asymptotic expansions of the Hurwitz–Lerch zeta function , 2004 .

[20]  Knut Petras,et al.  Gaussian integration of Chebyshev polynomials and analytic functions , 1995, Numerical Algorithms.

[21]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.

[22]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[23]  Sotirios E. Notaris Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions , 2006, Math. Comput..

[24]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[25]  Barbara M. Johnston,et al.  Clenshaw--Curtis and Gauss--Legendre Quadrature for Certain Boundary Element Integrals , 2008, SIAM J. Sci. Comput..