The kink phenomenon in Fejér and Clenshaw–Curtis quadrature
暂无分享,去创建一个
[1] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[2] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[3] A. Stroud,et al. Approximate Calculation of Integrals , 1962 .
[4] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[5] M. Chawla. Error estimates for the Clenshaw-Curtis quadrature , 1968 .
[6] M. Mori,et al. Estimation of errors in the numerical quadrature of analytic functions , 1971 .
[7] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[8] W. Gautschi. A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .
[9] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[10] P. Favati,et al. Bounds on the error of fejer and clenshaw-curtis type quadrature for analytic functions , 1993 .
[11] A. Fokas,et al. Complex Variables: Introduction and Applications , 1997 .
[12] K. Petras. Gaussian Versus Optimal Integration of Analytic Functions , 1998 .
[13] Rudolf Scherer,et al. Estimating quadrature errors for analytic functions using kernel representations and biorthogonal systems , 2000, Numerische Mathematik.
[14] Knut Petras,et al. On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..
[15] A. ADoefaa,et al. ? ? ? ? f ? ? ? ? ? , 2003 .
[16] Athanassios S. Fokas,et al. Complex Variables: Contents , 2003 .
[17] N. Lord. Complex variables: introduction and applications (2nd edn), by M. J. Ablowitz and A. S. Fokas. Pp. 647. £18.95. 2003. ISBN 0 521 53429 1 (Cambridge University Press). , 2004 .
[18] J. A. C. Weideman,et al. Quadrature rules based on partial fraction expansions , 2000, Numerical Algorithms.
[19] J. López,et al. Asymptotic expansions of the Hurwitz–Lerch zeta function , 2004 .
[20] Knut Petras,et al. Gaussian integration of Chebyshev polynomials and analytic functions , 1995, Numerical Algorithms.
[21] J. Dicapua. Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.
[22] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[23] Sotirios E. Notaris. Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions , 2006, Math. Comput..
[24] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[25] Barbara M. Johnston,et al. Clenshaw--Curtis and Gauss--Legendre Quadrature for Certain Boundary Element Integrals , 2008, SIAM J. Sci. Comput..