Multi-sensor Fusion

In the previous chapters, we have discussed issues concerning hardware, communication and network topologies for the practical deployment of Body Sensor Networks (BSNs). The pursuit of low power miniaturised distributed sensing under a patient’s natural physiological conditions has also imposed significant technical challenges on integrating information from what is often heterogeneous, incomplete and error-prone sensor data. For BSNs, the nature of errors can be attributed to a number of sources; but motion artefacts, inherent limitations and possible malfunctions of the sensors along with communication errors are the main causes of concern. In practice, it is desirable to rely on sensors with redundant or complementary data to maximise the information content and reduce both systematic errors and random artefacts. This, in essence, is the main drive for multi-sensor fusion, which is concerned with the synergistic use of multiple sources of information.

[1]  Glenn Shafer,et al.  Readings in Uncertain Reasoning , 1990 .

[2]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[3]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[4]  David G. Stork,et al.  Pattern Classification , 1973 .

[5]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[6]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[7]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[8]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[9]  Douglas Stott Parker,et al.  Map-reduce-merge: simplified relational data processing on large clusters , 2007, SIGMOD '07.

[10]  Paolo Pirjanian,et al.  Multiple Objective vs. Fuzzy Behavior Coordination , 1999 .

[11]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[12]  B. Parhami Multi-sensor data fusion and reliable multi-channel computation: unifying concepts and techniques , 1995, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.

[13]  Stelios C. A. Thomopoulos Sensor integration and data fusion , 1990, J. Field Robotics.

[14]  Andrey Gubarev,et al.  Dremel : Interactive Analysis of Web-Scale Datasets , 2011 .

[15]  G. Passariello,et al.  Multisensor fusion for atrial and ventricular activity detection in coronary care monitoring , 1999, IEEE Transactions on Biomedical Engineering.

[16]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[17]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[18]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[19]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[20]  Andrew Starr,et al.  A Review of data fusion models and architectures: towards engineering guidelines , 2005, Neural Computing & Applications.

[21]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[22]  C. Lee Giles,et al.  Bayesian Classification and Feature Selection from Finite Data Sets , 2000, UAI.

[23]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[24]  David J. Hand,et al.  Construction and Assessment of Classification Rules , 1997 .

[25]  E. Oja,et al.  Independent Component Analysis , 2013 .

[26]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[27]  Bernadette Dorizzi,et al.  Human activities of daily living recognition using fuzzy logic for elderly home monitoring , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[28]  Christian Jutten,et al.  Space or time adaptive signal processing by neural network models , 1987 .

[29]  Paul Lukowicz,et al.  Automatic Calibration of Body Worn Acceleration Sensors , 2004, Pervasive.

[30]  James P. Egan,et al.  Signal detection theory and ROC analysis , 1975 .

[31]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[32]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[33]  Ren C. Luo,et al.  Multisensor integration and fusion in intelligent systems , 1989, IEEE Trans. Syst. Man Cybern..

[34]  S. Iyengar,et al.  Multi-Sensor Fusion: Fundamentals and Applications With Software , 1997 .

[35]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Firooz A. Sadjadi Selected Papers on Sensor and Data Fusion , 1996 .

[37]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[38]  Geoffrey E. Hinton,et al.  Recognizing Handwritten Digits Using Mixtures of Linear Models , 1994, NIPS.

[39]  Vincenzo Conti,et al.  Fuzzy Fusion in Multimodal Biometric Systems , 2007, KES.

[40]  Lotfi A. Zadeh,et al.  Fuzzy Algorithms , 1968, Inf. Control..

[41]  Michael Unser,et al.  Weighted averaging of a set of noisy images for maximum signal-to-noise ratio , 1990, IEEE Trans. Acoust. Speech Signal Process..

[42]  P Pudil,et al.  Simultaneous learning of decision rules and important attributes for classification problems in image analysis , 1994, Image Vis. Comput..

[43]  Inderjit S. Dhillon,et al.  A Data-Clustering Algorithm on Distributed Memory Multiprocessors , 1999, Large-Scale Parallel Data Mining.

[44]  Visa Koivunen,et al.  Identifiability, separability, and uniqueness of linear ICA models , 2004, IEEE Signal Processing Letters.

[45]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[46]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[47]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[48]  Arthur P. Dempster,et al.  A Generalization of Bayesian Inference , 1968, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[49]  N. Kannathal,et al.  Data Fusion of Multimodal Cardiovascular Signals , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[50]  G. Krishna,et al.  Agglomerative clustering using the concept of mutual nearest neighbourhood , 1978, Pattern Recognit..

[51]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[52]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[53]  Jun Liu,et al.  Feature-based target recognition with a Bayesian network , 1996 .

[54]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[55]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[56]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[57]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[58]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[59]  Glenn Shafer,et al.  Perspectives on the theory and practice of belief functions , 1990, Int. J. Approx. Reason..

[60]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[61]  Kurt Keutzer,et al.  Fast support vector machine training and classification on graphics processors , 2008, ICML '08.

[62]  Scott Shenker,et al.  Spark: Cluster Computing with Working Sets , 2010, HotCloud.

[63]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[64]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[65]  Ren C. Luo,et al.  Multisensor fusion and integration: approaches, applications, and future research directions , 2002 .

[66]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[67]  Aart J. C. Bik,et al.  Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.

[68]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[69]  Hani Hagras,et al.  A type-2 fuzzy embedded agent to realise ambient intelligence in ubiquitous computing environments , 2005, Inf. Sci..

[70]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[71]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[72]  Frank Dabek,et al.  Large-scale Incremental Processing Using Distributed Transactions and Notifications , 2010, OSDI.

[73]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[74]  Eric V. Denardo,et al.  Dynamic Programming: Models and Applications , 2003 .

[75]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[76]  Pragya Agarwal,et al.  Self-Organising Maps , 2008 .

[77]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[78]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[79]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[80]  Philip Robinson,et al.  Inexpensive and Automatic Calibration for Acceleration Sensors , 2004, UCS.

[81]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[82]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[83]  Yon Dohn Chung,et al.  Parallel data processing with MapReduce: a survey , 2012, SGMD.

[84]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[85]  H. Keselman,et al.  Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables , 1992 .

[86]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[87]  Gregory M. Provan,et al.  Efficient Learning of Selective Bayesian Network Classifiers , 1996, ICML.

[88]  Stephen M. Omohundro,et al.  Nonlinear Image Interpolation using Manifold Learning , 1994, NIPS.

[89]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[90]  Abraham Kandel,et al.  Introduction to Pattern Recognition: Statistical, Structural, Neural and Fuzzy Logic Approaches , 1999 .

[91]  Lotfi A. Zadeh,et al.  Soft computing and fuzzy logic , 1994, IEEE Software.

[92]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[93]  Sonya A. H. McMullen,et al.  Mathematical Techniques in Multisensor Data Fusion (Artech House Information Warfare Library) , 2004 .

[94]  Thomas G. Dietterich,et al.  Learning with Many Irrelevant Features , 1991, AAAI.