An alternate description of a (q + 1, 8)-cage

Let q ≥ 2 be a prime power. In this note we present an alternate description of the known (q + 1, 8)-cages which has allowed us to construct small (k, g)-graphs for k = q − 1, q and g = 7, 8 in other papers on this same topic.

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  E. Bannai,et al.  On finite Moore graphs , 1973 .

[3]  C. T. Benson Minimal Regular Graphs of Girths Eight and Twelve , 1966, Canadian Journal of Mathematics.

[4]  Camino Balbuena,et al.  A construction of small regular bipartite graphs of girth 8 , 2009 .

[5]  Camino Balbuena,et al.  Families of small regular graphs of girth 7 , 2012, Electron. Notes Discret. Math..

[6]  Camino Balbuena,et al.  Families of small regular graphs of girth 5 , 2011, Discret. Math..

[7]  M. O'Keefe,et al.  The smallest graph of girth 6 and valency 7 , 1981, J. Graph Theory.

[8]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[9]  Camino Balbuena,et al.  Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices , 2008, SIAM J. Discret. Math..

[10]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[11]  A. Barlotti,et al.  Combinatorics of Finite Geometries , 1975 .

[12]  Camino Balbuena,et al.  Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages , 2010, Discret. Math..

[13]  Markus Meringer,et al.  Fast generation of regular graphs and construction of cages , 1999, J. Graph Theory.

[14]  Vito Napolitano,et al.  A family of regular graphs of girth 5 , 2008, Discret. Math..

[15]  Geoffrey Exoo A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15, and 16 , 1996, Electron. J. Comb..

[16]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  András Gács,et al.  On geometric constructions of (k, g)-graphs , 2008, Contributions Discret. Math..

[18]  Pak-Ken Wong,et al.  Cages - a survey , 1982, J. Graph Theory.

[19]  Camino Balbuena,et al.  Small Regular Graphs of Girth 7 , 2015, Electron. J. Comb..

[20]  G. Exoo,et al.  Dynamic Cage Survey , 2011 .

[21]  Camino Balbuena,et al.  A Construction of Small (q-1)-Regular Graphs of Girth 8 , 2015, Electron. J. Comb..

[22]  V. A. Ustimenko,et al.  A linear interpretation of the flag geometries of Chevalley groups , 1990 .

[23]  J. Thas,et al.  Finite Generalized Quadrangles , 2009 .

[24]  Stanley E. Payne,et al.  Affine representations of generalized quadrangles , 1970 .

[25]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[26]  Felix Lazebnik,et al.  New upper bounds on the order of cages , 1996, Electron. J. Comb..

[27]  Vito Napolitano,et al.  Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .