An alternate description of a (q + 1, 8)-cage
暂无分享,去创建一个
Camino Balbuena | Domenico Labbate | Marién Abreu | Gabriela Araujo-Pardo | C. Balbuena | G. Araujo-Pardo | M. Abreu | D. Labbate
[1] Frank Harary,et al. Graph Theory , 2016 .
[2] E. Bannai,et al. On finite Moore graphs , 1973 .
[3] C. T. Benson. Minimal Regular Graphs of Girths Eight and Twelve , 1966, Canadian Journal of Mathematics.
[4] Camino Balbuena,et al. A construction of small regular bipartite graphs of girth 8 , 2009 .
[5] Camino Balbuena,et al. Families of small regular graphs of girth 7 , 2012, Electron. Notes Discret. Math..
[6] Camino Balbuena,et al. Families of small regular graphs of girth 5 , 2011, Discret. Math..
[7] M. O'Keefe,et al. The smallest graph of girth 6 and valency 7 , 1981, J. Graph Theory.
[8] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[9] Camino Balbuena,et al. Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices , 2008, SIAM J. Discret. Math..
[10] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[11] A. Barlotti,et al. Combinatorics of Finite Geometries , 1975 .
[12] Camino Balbuena,et al. Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages , 2010, Discret. Math..
[13] Markus Meringer,et al. Fast generation of regular graphs and construction of cages , 1999, J. Graph Theory.
[14] Vito Napolitano,et al. A family of regular graphs of girth 5 , 2008, Discret. Math..
[15] Geoffrey Exoo. A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15, and 16 , 1996, Electron. J. Comb..
[16] W. T. Tutte. A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] András Gács,et al. On geometric constructions of (k, g)-graphs , 2008, Contributions Discret. Math..
[18] Pak-Ken Wong,et al. Cages - a survey , 1982, J. Graph Theory.
[19] Camino Balbuena,et al. Small Regular Graphs of Girth 7 , 2015, Electron. J. Comb..
[20] G. Exoo,et al. Dynamic Cage Survey , 2011 .
[21] Camino Balbuena,et al. A Construction of Small (q-1)-Regular Graphs of Girth 8 , 2015, Electron. J. Comb..
[22] V. A. Ustimenko,et al. A linear interpretation of the flag geometries of Chevalley groups , 1990 .
[23] J. Thas,et al. Finite Generalized Quadrangles , 2009 .
[24] Stanley E. Payne,et al. Affine representations of generalized quadrangles , 1970 .
[25] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[26] Felix Lazebnik,et al. New upper bounds on the order of cages , 1996, Electron. J. Comb..
[27] Vito Napolitano,et al. Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .