Organic Semiconductor Single Crystals for Electronics and Photonics

Organic semiconducting single crystals (OSSCs) are ideal candidates for the construction of high-performance optoelectronic devices/circuits and a great platform for fundamental research due to their long-range order, absence of grain boundaries, and extremely low defect density. Impressive improvements have recently been made in organic optoelectronics: the charge-carrier mobility is now over 10 cm2 V-1 s-1 and the fluorescence efficiency reaches 90% for many OSSCs. Moreover, high mobility and strong emission can be integrated into a single OSSC, for example, showing a mobility of up to 34 cm2 V-1 s-1 and a photoluminescence yield of 41.2%. These achievements are attributed to the rational design and synthesis of organic semiconductors as well as improvements in preparation technology for crystals, which accelerate the application of OSSCs in devices and circuits, such as organic field-effect transistors, organic photodetectors, organic photovoltaics, organic light-emitting diodes, organic light-emitting transistors, and even electrically pumped organic lasers. In this context, an overview of these fantastic advancements in terms of the fundamental insights into developing high-performance organic semiconductors, efficient strategies for yielding desirable high-quality OSSCs, and their applications in optoelectronic devices and circuits is presented. Finally, an overview of the development of OSSCs along with current challenges and future research directions is provided.

[1]  M. Kappl,et al.  Organic Field‐Effect Transistors based on Highly Ordered Single Polymer Fibers , 2012, Advanced materials.

[2]  W. Hu,et al.  Mobility dependence on the conducting channel dimension of organic field-effect transistors based on single-crystalline nanoribbons , 2010 .

[3]  Takao Someya,et al.  Chemical and Physical Sensing by Organic Field‐Effect Transistors and Related Devices , 2010, Advanced materials.

[4]  Hong‐Bo Sun,et al.  Highly Efficient Three Primary Color Organic Single‐Crystal Light‐Emitting Devices with Balanced Carrier Injection and Transport , 2017 .

[5]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[6]  Jeong In Han,et al.  High‐Mobility Organic Transistors Based on Single‐Crystalline Microribbons of Triisopropylsilylethynyl Pentacene via Solution‐Phase Self‐Assembly , 2007 .

[7]  H. Xin,et al.  Interfacing Solution‐Grown C60 and (3‐Pyrrolinium)(CdCl3) Single Crystals for High‐Mobility Transistor‐Based Memory Devices , 2015, Advanced materials.

[8]  Y. Zhao,et al.  Organic Micro/Nanoscale Lasers. , 2016, Accounts of chemical research.

[9]  Gui Yu,et al.  Functional Organic Field‐Effect Transistors , 2010, Advanced materials.

[10]  Yong-Young Noh,et al.  Organic Light Detectors: Photodiodes and Phototransistors , 2013, Advanced materials.

[11]  J. Salbeck,et al.  Organic phototransistor based on intramolecular charge transfer in a bifunctional spiro compound , 2004 .

[12]  J. Brédas,et al.  Temperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport , 2015 .

[13]  Gregor Schwartz,et al.  White organic light-emitting diodes with fluorescent tube efficiency , 2009, Nature.

[14]  C. Adachi,et al.  Blue-Light-Emitting Ambipolar Field-Effect Transistors Using an Organic Single Crystal of 1,4-Bis(4-methylstyryl)benzene , 2008 .

[15]  Small gap semiconducting organic charge-transfer interfaces , 2010, 1004.3927.

[16]  Zhenan Bao,et al.  Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices , 2013 .

[17]  A. Banerjee,et al.  Role of Solvent and External Growth Environments to Determine Growth Morphology of Molecular Crystals , 2013 .

[18]  Qiang Shi,et al.  Deepening Insights of Charge Transfer and Photophysics in a Novel Donor–Acceptor Cocrystal for Waveguide Couplers and Photonic Logic Computation , 2016, Advanced materials.

[19]  Chihaya Adachi,et al.  Unusual photoluminescence characteristics of tetraphenylpyrene (TPPy) in various aggregated morphologies , 2006 .

[20]  Hisao Yanagi,et al.  Emission gain narrowing from single crystals of a thiophene/phenylene co-oligomer , 2002 .

[21]  Henning Sirringhaus,et al.  Band-like temperature dependence of mobility in a solution-processed organic semiconductor. , 2010, Nature materials.

[22]  Yoshihiro Iwasa,et al.  Ambipolar Light‐Emitting Transistors of a Tetracene Single Crystal , 2007 .

[23]  Daoben Zhu,et al.  Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. , 2005, Journal of the American Chemical Society.

[24]  Jianqi Zhang,et al.  Asymmetric thiophene/pyridine flanked diketopyrrolopyrrole polymers for high performance polymer ambipolar field-effect transistors and solar cells , 2017 .

[25]  Takeshi Yamao,et al.  High Mobility and Luminescent Efficiency in Organic Single‐Crystal Light‐Emitting Transistors , 2009 .

[26]  J. Pflaum,et al.  Mixed crystalline films of co-evaporated hydrogen- and fluorine-terminated phthalocyanines and their application in photovoltaic devices , 2009 .

[27]  H. Meng,et al.  2D and 3D Crystal Formation of 2,6‐Bis[4‐ethylphenyl]anthracene with Isotropic High Charge‐Carrier Mobility , 2017 .

[28]  Daoben Zhu,et al.  Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. , 2012, Chemical reviews.

[29]  Liqiang Li,et al.  The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals. , 2016, Angewandte Chemie.

[30]  F. Rosei,et al.  1,5-, 2,6- and 9,10-distyrylanthracenes as luminescent organic semiconductors , 2013 .

[31]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[32]  Jie Yang,et al.  Functional organic single crystals for solid‐state laser applications , 2014 .

[33]  S. Forrest,et al.  Accumulation of electric-field-stabilized geminate polaron pairs in an organic semiconductor to attain high excitation density under low intensity pumping , 2006 .

[34]  H. Xin,et al.  Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues , 2016 .

[35]  Daoben Zhu,et al.  Organic Donor-Acceptor Complexes as Novel Organic Semiconductors. , 2017, Accounts of chemical research.

[36]  S. Hotta Optically and electrically excited emissions from organic semiconducting oligomer crystals , 2017 .

[37]  Piers Andrew,et al.  Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser , 2002 .

[38]  Sankar Subramanian,et al.  Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. , 2008, Journal of the American Chemical Society.

[39]  Ji Hyung Jung,et al.  High‐Performance UV–Vis–NIR Phototransistors Based on Single‐Crystalline Organic Semiconductor–Gold Hybrid Nanomaterials , 2017 .

[40]  Yang Yang,et al.  Patterning organic single-crystal transistor arrays , 2006, Nature.

[41]  Daoben Zhu,et al.  Charge‐Transfer Complex Crystal Based on Extended‐π‐Conjugated Acceptor and Sulfur‐Bridged Annulene: Charge‐Transfer Interaction and Remarkable High Ambipolar Transport Characteristics , 2014, Advanced materials.

[42]  Jenny Clark,et al.  Organic photonics for communications , 2010 .

[43]  Chunhui Xu,et al.  A General Method for Growing Two-Dimensional Crystals of Organic Semiconductors by "Solution Epitaxy". , 2016, Angewandte Chemie.

[44]  K. Tsukagoshi,et al.  Solution‐Processable Organic Single Crystals with Bandlike Transport in Field‐Effect Transistors , 2011, Advanced materials.

[45]  Chihaya Adachi,et al.  High current density in light-emitting transistors of organic single crystals. , 2008, Physical review letters.

[46]  S. Hotta,et al.  Green light emission from the edges of organic single-crystal transistors , 2010 .

[47]  F. He,et al.  Supramolecular Network Conducting the Formation of Uniaxially Oriented Molecular Crystal of Cyano Substituted Oligo(p-phenylene vinylene) and Its Amplified Spontaneous Emission (ASE) Behavior , 2008 .

[48]  Huanli Dong,et al.  Recent advances in one-dimensional organic p–n heterojunctions for optoelectronic device applications , 2016 .

[49]  F. Liu,et al.  Regioregular Bis-Pyridal[2,1,3]thiadiazole-Based Semiconducting Polymer for High-Performance Ambipolar Transistors. , 2017, Journal of the American Chemical Society.

[50]  Jong Won Chung,et al.  High‐Performance Transistors and Complementary Inverters Based on Solution‐Grown Aligned Organic Single‐Crystals , 2012, Advanced materials.

[51]  W. Xu,et al.  Enhancement of the p-channel performance of sulfur-bridged annulene through a donor–acceptor co-crystal approach , 2014 .

[52]  S. Hotta,et al.  Current‐Confinement Structure and Extremely High Current Density in Organic Light‐Emitting Transistors , 2012, Advanced materials.

[53]  Zhenan Bao,et al.  Integrated materials design of organic semiconductors for field-effect transistors. , 2013, Journal of the American Chemical Society.

[54]  Qidai Chen,et al.  Preparation and time-resolved fluorescence study of RGB organic crystals , 2013 .

[55]  Illhun Cho,et al.  Highly Luminescent 2D‐Type Slab Crystals Based on a Molecular Charge‐Transfer Complex as Promising Organic Light‐Emitting Transistor Materials , 2017, Advanced materials.

[56]  S. Jenekhe Polymer semiconductors: a fast mover with a bright spark. , 2008, Nature materials.

[57]  Zhenan Bao,et al.  High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. , 2012, Journal of the American Chemical Society.

[58]  Daoben Zhu,et al.  Sulfur‐Bridged Annulene‐TCNQ Co‐Crystal: A Self‐Assembled ‘‘Molecular Level Heterojunction’’ with Air Stable Ambipolar Charge Transport Behavior , 2012, Advanced materials.

[59]  Yoshio Taniguchi,et al.  Light Emission from Organic Single-Crystal Field-Effect Transistors , 2005 .

[60]  A. Yamano,et al.  V‐Shaped Organic Semiconductors With Solution Processability, High Mobility, and High Thermal Durability , 2013, Advanced materials.

[61]  W. Xu,et al.  Biphase micro/nanometer sized single crystals of organic semiconductors: Control synthesis and their strong phase dependent optoelectronic properties , 2010 .

[62]  A. Heeger,et al.  General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. , 2014, Nano letters.

[63]  Jianbin Xu,et al.  Soluble and Stable N‐Heteropentacenes with High Field‐Effect Mobility , 2011, Advanced materials.

[64]  Qidai Chen,et al.  Fabrication and Characterization of Organic Single Crystal‐Based Light‐Emitting Devices with Improved Contact Between the Metallic Electrodes and Crystal , 2014 .

[65]  Yong‐Lai Zhang,et al.  High-Quality Large-Size Organic Crystals Prepared by Improved Physical Vapor Growth Technique and Their Optical Gain Properties , 2011 .

[66]  Kyriaki Manoli,et al.  Organic field-effect transistor sensors: a tutorial review. , 2013, Chemical Society reviews.

[67]  Yichun Liu,et al.  Gas Dielectric Transistor of CuPc Single Crystalline Nanowire for SO2 Detection Down to Sub‐ppm Levels at Room Temperature , 2013, Advanced materials.

[68]  Deqing Zhang,et al.  1,6- and 2,7-trans-β-Styryl Substituted Pyrenes Exhibiting Both Emissive and Semiconducting Properties in the Solid State , 2017 .

[69]  Richard H. Friend,et al.  Spatial control of the recombination zone in an ambipolar light-emitting organic transistor , 2006 .

[70]  Xingyuan Liu,et al.  Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping. , 2017, Science Bulletin.

[71]  Theo Siegrist,et al.  Physical vapor growth of centimeter-sized crystals of α-hexathiophene , 1997 .

[72]  Chihaya Adachi,et al.  Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers , 2010 .

[73]  Thomas N Jackson,et al.  Mobility overestimation due to gated contacts in organic field-effect transistors , 2016, Nature Communications.

[74]  V. Podzorov,et al.  Organic single crystals: Addressing the fundamentals of organic electronics , 2013 .

[75]  Ingemar Lundström,et al.  A hydrogen−sensitive MOS field−effect transistor , 1975 .

[76]  Helena Alves,et al.  Metallic conduction at organic charge-transfer interfaces. , 2008, Nature materials.

[77]  V. Lynch,et al.  Enhanced phosphorescence in dibenzophosphole chalcogenide mixed crystal , 2011 .

[78]  Gerhard Wegner,et al.  Topochemische Reaktionen von Monomeren mit konjugierten Dreifachbindungen / Tochemical Reactions of Monomers with conjugated triple Bonds , 1969 .

[79]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[80]  Michele Muccini,et al.  Morphology and Field‐Effect‐Transistor Mobility in Tetracene Thin Films , 2005 .

[81]  Z. Berkovitch-yellin Toward an ab initio derivation of crystal morphology , 1985 .

[82]  Yichun Liu,et al.  Highly sensitive H2S sensors based on ultrathin organic single-crystal microplate transistors , 2016 .

[83]  A. Morpurgo,et al.  Progress in organic single-crystal field-effect transistors , 2013, 1302.3450.

[84]  Jianbin Xu,et al.  Solution-Processed Ambipolar Organic Thin-Film Transistors by Blending p- and n-Type Semiconductors: Solid Solution versus Microphase Separation. , 2015, ACS applied materials & interfaces.

[85]  David Beljonne,et al.  Interchain Interactions in Organic π‐Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport , 2001 .

[86]  Joong Tark Han,et al.  Single‐Crystal Polythiophene Microwires Grown by Self‐Assembly , 2006 .

[87]  H. Sirringhaus,et al.  Decoupling Charge Transport and Electroluminescence in a High Mobility Polymer Semiconductor , 2016, Advanced materials.

[88]  W. Hu,et al.  Pyridyl-substituted anthracene derivatives with solid-state emission and charge transport properties , 2016 .

[89]  Hongzheng Chen,et al.  Preparation of Single‐Crystalline Heterojunctions for Organic Electronics , 2017, Advanced materials.

[90]  Hong-Bo Sun,et al.  Intrinsic Polarization and Tunable Color of Electroluminescence from Organic Single Crystal-based Light-Emitting Devices , 2015, Scientific Reports.

[91]  Alessandro Troisi,et al.  Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. , 2011, Physical review letters.

[92]  N. Koch,et al.  Sub-nanometer control of the interlayer spacing in thin films of intercalated rodlike conjugated molecules. , 2007, The journal of physical chemistry. B.

[93]  H. Naito,et al.  Single crystal organic photovoltaic cells using lateral electron transport , 2017 .

[94]  Yuguang Ma,et al.  An ambipolar organic field-effect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm(2) V(-1) s(-1). , 2016, Chemical communications.

[95]  H. Klauk,et al.  Organic Transistors Based on Di(phenylvinyl)anthracene: Performance and Stability , 2007 .

[96]  W. Hu,et al.  High‐Performance UV‐Sensitive Organic Phototransistors Based on Benzo[1,2‐b:4,5‐b′]dithiophene Dimers Linked with Unsaturated Bonds , 2015 .

[97]  John A Rogers,et al.  Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. , 2007, Chemical reviews.

[98]  W. Hu,et al.  Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA). , 2015, Chemical communications.

[99]  Jinsong Huang,et al.  Ultrahigh Gain, Low Noise, Ultraviolet Photodetectors with Highly Aligned Organic Crystals , 2016 .

[100]  Zhen Li,et al.  Progress of pyrene-based organic semiconductor in organic field effect transistors , 2016, Science China Chemistry.

[101]  F. Spano The spectral signatures of Frenkel polarons in H- and J-aggregates. , 2010, Accounts of chemical research.

[102]  Ben Zhong Tang,et al.  Aggregation‐Induced Emission: The Whole Is More Brilliant than the Parts , 2014, Advanced materials.

[103]  G. Cheng,et al.  Cross dipole stacking in the crystal of distyrylbenzene derivative: the approach toward high solid-state luminescence efficiency. , 2005, Journal of the American Chemical Society.

[104]  Soo Young Park,et al.  Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology , 2013 .

[105]  Wenping Hu,et al.  Competition between Arene-Perfluoroarene and Charge-Transfer Interactions in Organic Light-Harvesting Systems. , 2017, Angewandte Chemie.

[106]  J A Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[107]  Wei Chen,et al.  Organic Cocrystal Photovoltaic Behavior: A Model System to Study Charge Recombination of C60 and C70 at the Molecular Level , 2016 .

[108]  Progress in organic single-crystal field-effect transistors , 2013 .

[109]  Hongxiang Li,et al.  Micrometer‐ and Nanometer‐Sized Organic Single‐Crystalline Transistors , 2008 .

[110]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[111]  Hui Jiang,et al.  Ultrathin organic single crystals: fabrication, field-effect transistors and thickness dependence of charge carrier mobility , 2011 .

[112]  Sergei V. Kalinin,et al.  Strain effects on the work function of an organic semiconductor , 2016, Nature Communications.

[113]  Hongxiang Li,et al.  Cruciforms: Assembling Single Crystal Micro- and Nanostructures from One to Three Dimensions and Their Applications in Organic Field-Effect Transistors , 2009 .

[114]  V. Podzorov,et al.  Organic single-crystal field-effect transistors , 2004 .

[115]  T. Russell,et al.  Approaching Intra‐ and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals , 2017, Advanced materials.

[116]  K. Yase,et al.  Epitaxial Growth of Thiophene/p‐Phenylene Co‐oligomers for Highly Polarized Light‐Emitting Crystals , 2001 .

[117]  S. Hotta,et al.  Direct formation of thin single crystals of organic semiconductors onto a substrate , 2007 .

[118]  Q. Miao,et al.  Ten Years of N‐Heteropentacenes as Semiconductors for Organic Thin‐Film Transistors , 2014, Advanced materials.

[119]  Yichun Liu,et al.  Electronic and optoelectronic properties of zinc phthalocyanine single-crystal nanobelt transistors , 2016 .

[120]  Michael E. Gershenson,et al.  Colloquium : Electronic transport in single-crystal organic transistors , 2006 .

[121]  Huanli Dong,et al.  Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices , 2016, Advanced materials.

[122]  A. Salleo,et al.  Effect of Acene Length on Electronic Properties in 5‐, 6‐, and 7‐Ringed Heteroacenes , 2011, Advanced materials.

[123]  Qichun Zhang,et al.  Molecular-Barrier-Enhanced Aromatic Fluorophores in Cocrystals with Unity Quantum Efficiency. , 2018, Angewandte Chemie.

[124]  I. Biaggio,et al.  Investigating the origin of the high photoconductivity of rubrene single crystals , 2008 .

[125]  Hongxiang Li,et al.  N‐Type 2D Organic Single Crystals for High‐Performance Organic Field‐Effect Transistors and Near‐Infrared Phototransistors , 2018, Advanced materials.

[126]  A. Heeger,et al.  High mobility emissive organic semiconductor , 2015, Nature Communications.

[127]  Heinz von Seggern,et al.  Light-emitting field-effect transistor based on a tetracene thin film. , 2003, Physical review letters.

[128]  L. Wan,et al.  Controllable crystalline structure of fullerene nanorods and transport properties of an individual nanorod , 2008 .

[129]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[130]  D. Braga,et al.  Luminescence Properties of 1,8-Naphthalimide Derivatives in Solution, in Their Crystals, and in Co-crystals: Toward Room-Temperature Phosphorescence from Organic Materials , 2014 .

[131]  Yuning Li,et al.  Ultrafast photoresponse organic phototransistors based on pyrimido[4,5-g]quinazoline-4,9-dione polymer , 2017 .

[132]  Jean-Michel Nunzi,et al.  First evidence of stimulated emission from a monolithic organic single crystal: α‐Octithiophene , 1997 .

[133]  C. Brabec,et al.  Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent , 2002 .

[134]  A. Heeger,et al.  Capillary‐Bridge Mediated Assembly of Conjugated Polymer Arrays toward Organic Photodetectors , 2017 .

[135]  Huanli Dong,et al.  Aromatic Extension at 2,6-Positions of Anthracene toward an Elegant Strategy for Organic Semiconductors with Efficient Charge Transport and Strong Solid State Emission. , 2017, Journal of the American Chemical Society.

[136]  T. Riedl,et al.  Highly sensitive determination of the polaron-induced optical absorption of organic charge-transport materials. , 2009, Physical review letters.

[137]  Jie Ying Gao,et al.  High‐Performance Field‐Effect Transistor Based on Dibenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene, an Easily Synthesized Semiconductor with High Ionization Potential , 2007 .

[138]  Akihiro Furube,et al.  Fluorescence Quantum Yield of Aromatic Hydrocarbon Crystals , 2009 .

[139]  Yichun Liu,et al.  Effect of the Deformation State on the Response of a Flexible H2S Sensor Based on a Ph5T2 Single-Crystal Transistor , 2018, IEEE Electron Device Letters.

[140]  D. Bradley,et al.  Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. , 2008, Nature materials.

[141]  M. Halik,et al.  Low-voltage organic field effect transistors with a 2-tridecyl[1]benzothieno[3,2-b][1]benzothiophene semiconductor layer. , 2012, Journal of the American Chemical Society.

[142]  G. C. Alfonso,et al.  Polymer Crystallization II: From Chain Microstructure to Processing , 2017 .

[143]  Nicola Marzari,et al.  Band‐Like Electron Transport with Record‐High Mobility in the TCNQ Family , 2015, Advanced materials.

[144]  S. Hotta,et al.  Emission Gain‐Narrowing from Melt‐Recrystallized Organic Semiconductors , 2002 .

[145]  S. Hotta,et al.  Electroluminescence from low-dimensionally confined crystals of thiophene/p-phenylene co-oligomers , 2002 .

[146]  P. Chan,et al.  Marangoni‐Effect‐Assisted Bar‐Coating Method for High‐Quality Organic Crystals with Compressive and Tensile Strains , 2017 .

[147]  Seong-Jun Yoon,et al.  Stimulated Resonance Raman Scattering and Laser Oscillation in Highly Emissive Distyrylbenzene‐Based Molecular Crystals , 2012, Advanced materials.

[148]  S. Hotta,et al.  Fabry–Pérot modes and optical waveguide effects in individual thiophene/phenylene co-oligomer nanoneedle crystals , 2013 .

[149]  M. Muccini A bright future for organic field-effect transistors , 2006, Nature materials.

[150]  Y. Zhen,et al.  Organic solid solution composed of two structurally similar porphyrins for organic solar cells. , 2015, Journal of the American Chemical Society.

[151]  A. Morpurgo,et al.  Single-crystal organic charge-transfer interfaces probed using Schottky-gated heterostructures. , 2012, Nature materials.

[152]  Bin Cai,et al.  One-Dimensional Nanostructure Field-Effect Sensors for Gas Detection , 2014, Sensors.

[153]  Yuguang Ma,et al.  Organic light-emitting diodes based on an ambipolar single crystal , 2012 .

[154]  A. Heeger,et al.  Doping‐Induced Carrier Density Modulation in Polymer Field‐Effect Transistors , 2016, Advanced materials.

[155]  Paul Heremans,et al.  Organic Transistors in Optical Displays and Microelectronic Applications , 2010, Advanced materials.

[156]  Hanying Li,et al.  4,5,9,10-Pyrene Diimides: A Family of Aromatic Diimides Exhibiting High Electron Mobility and Two-Photon Excited Emission. , 2017, Angewandte Chemie.

[157]  F. Rosei,et al.  Maximizing field-effect mobility and solid-state luminescence in organic semiconductors. , 2012, Angewandte Chemie.

[158]  S. Hotta Organic single-crystal light-emitting field-effect transistors , 2014, 2015 20th Microoptics Conference (MOC).

[159]  F. Fages,et al.  Synthesis and thin film electronic properties of two pyrene-substituted oligothiophene derivatives , 2006 .

[160]  Kangwon Lee,et al.  Activating efficient phosphorescence from purely organic materials by crystal design. , 2011, Nature chemistry.

[161]  Hongzheng Chen,et al.  Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules: Rough surfaces and relatively low charge mobility , 2016 .

[162]  John E. Anthony,et al.  High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors , 2007 .

[163]  A. Borghesi,et al.  Directional dispersion in absorbance spectra of oligothiophene crystals. , 2005, The Journal of chemical physics.

[164]  H. Yi,et al.  Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors. , 2013, Nature materials.

[165]  F. Schreiber,et al.  Organic-organic heterostructures: concepts and applications. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[166]  Huanli Dong,et al.  Recent advances in polymer phototransistors , 2015 .

[167]  Soumya Dutta,et al.  Gate‐Voltage Control of Optically‐ Induced Charges and Memory Effects in Polymer Field‐Effect Transistors , 2004 .

[168]  M. Steigerwald,et al.  Organization of acenes with a cruciform assembly motif. , 2006, Journal of the American Chemical Society.

[169]  Wenping Hu,et al.  Controlled growth and assembly of one-dimensional ordered nanostructures of organic functional materials , 2011 .

[170]  C. Adachi,et al.  Light-emitting organic field-effect transistors based on highly luminescent single crystals of thiophene/phenylene co-oligomers , 2014 .

[171]  L. Wan,et al.  Controllable Preparation of Submicrometer Single-Crystal C60 Rods and Tubes Trough Concentration Depletion at the Surfaces of Seeds , 2007 .

[172]  Oana D. Jurchescu,et al.  Effect of impurities on the mobility of single crystal pentacene , 2004, cond-mat/0404130.

[173]  H. Xin,et al.  Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers , 2017 .

[174]  A. Morpurgo,et al.  Tunable Fröhlich polarons in organic single-crystal transistors , 2006, Nature materials.

[175]  K. Walzer,et al.  Highly efficient organic devices based on electrically doped transport layers. , 2007, Chemical reviews.

[176]  Yuguang Ma,et al.  Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission. , 2007, Chemical communications.

[177]  Huanli Dong,et al.  Multilevel Investigation of Charge Transport in Conjugated Polymers. , 2016, Accounts of chemical research.

[178]  K. Müllen,et al.  A High Gain and High Charge Carrier Mobility Indenofluorene‐Phenanthrene Copolymer for Light Amplification and Organic Lasing , 2011, Advanced materials.

[179]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[180]  V. Roy,et al.  Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer , 2007 .

[181]  Ryan T. K. Kwok,et al.  Aggregation-Induced Emission: Together We Shine, United We Soar! , 2015, Chemical reviews.

[182]  P. Günter,et al.  Self‐assembly of an acentric co‐crystal of a highly hyperpolarizable merocyanine dye with optimized alignment for nonlinear optics , 1997 .

[183]  W. Hu,et al.  Naphthyl substituted anthracene combining charge transport with light emission , 2015 .

[184]  Daoben Zhu,et al.  Interface engineering: an effective approach toward high-performance organic field-effect transistors. , 2009, Accounts of chemical research.

[185]  T. Inabe,et al.  Molecular motion, dielectric response, and phase transition of charge-transfer crystals: acquired dynamic and dielectric properties of polar molecules in crystals. , 2015, Journal of the American Chemical Society.

[186]  I. Biaggio,et al.  Primary photoexcitations and the origin of the photocurrent in rubrene single crystals. , 2005, Physical review letters.

[187]  Penglei Chen,et al.  Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations. , 2016, Small.

[188]  Markus Pollnau,et al.  Organic solid‐state integrated amplifiers and lasers , 2012 .

[189]  Toshihiro Okamoto,et al.  Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation , 2018, Science Advances.

[190]  S. Hotta,et al.  High current densities in a highly photoluminescent organic single-crystal light-emitting transistor , 2010 .

[191]  Paul W. M. Blom,et al.  Migration-assisted energy transfer at conjugated polymer/metal interfaces , 2005 .

[192]  M. Muthukumar Commentary on theories of polymer crystallization , 2000 .

[193]  Fangxu Yang,et al.  Molecular cocrystals: design, charge-transfer and optoelectronic functionality. , 2018, Physical chemistry chemical physics : PCCP.

[194]  M. Yokoyama,et al.  Very-thin-perylene-crystal-based electroluminescent devices , 2006 .

[195]  Qiang Shi,et al.  Rational Design of Charge-Transfer Interactions in Halogen-Bonded Co-crystals toward Versatile Solid-State Optoelectronics. , 2015, Journal of the American Chemical Society.

[196]  G. Reiter,et al.  Progress in Understanding of Polymer Crystallization , 2007 .

[197]  N. S. Sariciftci,et al.  Semiconducting and Metallic Polymers , 2010 .

[198]  J. Rogers,et al.  Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals , 2004, Science.

[199]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[200]  Wei Xu,et al.  High‐Performance Organic Single‐Crystal Transistors and Digital Inverters of an Anthracene Derivative , 2009 .

[201]  Jean Roncali,et al.  Molecular bulk heterojunctions: an emerging approach to organic solar cells. , 2009, Accounts of chemical research.

[202]  Fabio Biscarini,et al.  Spatially correlated charge transport in organic thin film transistors. , 2004, Physical review letters.

[203]  H. von Seggern,et al.  Investigation of Charge‐Carrier Injection in Ambipolar Organic Light‐Emitting Field‐Effect Transistors , 2009 .

[204]  Vidmantas Gulbinas,et al.  Excited state and charge photogeneration dynamics in conjugated polymers. , 2007, The journal of physical chemistry. B.

[205]  Yichun Liu,et al.  High-Response Identifiable Gas Sensor Based on a Gas-Dielectric ZnPc Nanobelt FET , 2017, IEEE Electron Device Letters.

[206]  W. Hu,et al.  Intermolecular Charge-Transfer Interactions Facilitate Two-Photon Absorption in Styrylpyridine-Tetracyanobenzene Cocrystals. , 2017, Angewandte Chemie.

[207]  W. Xu,et al.  Nanowire crystals of a rigid rod conjugated polymer. , 2009, Journal of the American Chemical Society.

[208]  Henning Sirringhaus,et al.  Critical assessment of charge mobility extraction in FETs. , 2017, Nature materials.

[209]  Yoshiaki Oku,et al.  Lateral organic light-emitting diode with field-effect transistor characteristics , 2005 .

[210]  Yichun Liu,et al.  Controllable gas selectivity at room temperature based on Ph5T2-modified CuPc nanowire field-effect transistors , 2017 .

[211]  Bin Su,et al.  Large-Scale Assembly of Organic Highly Crystalline Multicomponent Wires through Surface-Engineered Condensation and Crystallization. , 2015, Small.

[212]  H. Okamoto,et al.  Optical pump-probe spectroscopy of photocarriers in rubrene single crystals , 2011 .

[213]  H. Matsui,et al.  Inkjet printing of single-crystal films , 2011, Nature.

[214]  Z. Bao,et al.  Solution‐Grown Organic Single‐Crystalline p‐n Junctions with Ambipolar Charge Transport , 2013, Advanced materials.

[215]  D. Bradley,et al.  Efficient Deep Red Light-Sensing All-Polymer Phototransistors with p-type/n-type Conjugated Polymer Bulk Heterojunction Layers. , 2017, ACS applied materials & interfaces.

[216]  Jianbin Xu,et al.  Electron Mobility Exceeding 10 cm2 V−1 s−1 and Band‐Like Charge Transport in Solution‐Processed n‐Channel Organic Thin‐Film Transistors , 2016, Advanced materials.

[217]  Zhigang Shuai,et al.  Computational methods for design of organic materials with high charge mobility. , 2010, Chemical Society reviews.

[218]  W. G. Schneider,et al.  RECOMBINATION RADIATION IN ANTHRACENE CRYSTALS , 1965 .

[219]  W. Hu,et al.  Organic semiconductor crystals. , 2018, Chemical Society reviews.

[220]  Chih-Wei Chang,et al.  Relaxation dynamics and structural characterization of organic nanobelts with aggregation-induced emission , 2012 .

[221]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[222]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[223]  Yunlong Guo,et al.  Experimental techniques for the fabrication and characterization of organic thin films for field-effect transistors. , 2011, Chemical reviews.

[224]  C. Adachi,et al.  p‐i‐n Homojunction in Organic Light‐Emitting Transistors , 2011, Advanced materials.

[225]  Takeo Kawase,et al.  Very high-mobility organic single-crystal transistors with in-crystal conduction channels , 2007 .

[226]  Liqiang Li,et al.  An Ultra Closely π‐Stacked Organic Semiconductor for High Performance Field‐Effect Transistors , 2007 .

[227]  Lei Jiang,et al.  Optical waveguide based on crystalline organic microtubes and microrods. , 2008, Angewandte Chemie.

[228]  Yunqi Liu,et al.  Isoindigo‐Based Polymers with Small Effective Masses for High‐Mobility Ambipolar Field‐Effect Transistors , 2017, Advanced materials.

[229]  R. Shimizu,et al.  A new electrode design for ambipolar injection in organic semiconductors , 2017, Nature Communications.

[230]  S. Mannsfeld,et al.  Patterning of α-Sexithiophene Single Crystals with Precisely Controlled Sizes and Shapes , 2009 .

[231]  Yoshihiro Iwasa,et al.  Ambipolar organic field-effect transistors based on rubrene single crystals , 2006 .

[232]  Mary O'Neill,et al.  Ordered Materials for Organic Electronics and Photonics , 2011, Advanced materials.

[233]  Dongpeng Yan,et al.  Molecular cocrystals of diphenyloxazole with tunable fluorescence, up-conversion emission and dielectric properties , 2016 .

[234]  Zhihua Chen,et al.  Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. , 2012, Advanced materials.

[235]  Bin Su,et al.  3D Dewetting for Crystal Patterning: Toward Regular Single‐Crystalline Belt Arrays and Their Functionality , 2016, Advanced materials.

[236]  Yichun Liu,et al.  Flexible Organic Single-Crystal Field-Effect Transistor for Ultra-Sensitivity Strain Sensing , 2017, IEEE Electron Device Letters.

[237]  Maarten Debucquoy,et al.  Numerical simulation of tetracene light-emitting transistors: A detailed balance of exciton processes , 2004 .

[238]  Yunqi Liu,et al.  High‐Performance Phototransistors Based on Organic Microribbons Prepared by a Solution Self‐Assembly Process , 2010 .

[239]  Nir Tessler,et al.  Lasers Based on Semiconducting Organic Materials , 1999 .

[240]  Qichun Zhang,et al.  Recent progress on organic donor–acceptor complexes as active elements in organic field-effect transistors , 2018 .

[241]  S. Hotta,et al.  Synthesis of thiophene/phenylene co‐oligomers. V. Functionalization at molecular terminals toward optoelectronic device applications , 2007 .

[242]  Peter J. Diemer,et al.  PNAS Plus Significance Statements , 2017, Proceedings of the National Academy of Sciences.

[243]  Zhenan Bao,et al.  Solution-processed, high-performance n-channel organic microwire transistors , 2009, Proceedings of the National Academy of Sciences.

[244]  Daoben Zhu,et al.  Micro- and nanocrystals of organic semiconductors. , 2010, Accounts of chemical research.

[245]  C. Rovira,et al.  Large photoresponsivity in high-mobility single-crystal organic field-effect phototransistors. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[246]  Wenping Hu,et al.  Organic single crystal field-effect transistors: advances and perspectives , 2010 .

[247]  Jie Cao,et al.  Solid-state packing of conjugated oligomers: from pi-stacks to the herringbone structure. , 2004, Journal of the American Chemical Society.

[248]  A. G. Lavrushko,et al.  Anthracene Crystals Under Intensive Optical Pumping , 1974 .

[249]  E. Namdas,et al.  How to recognize lasing , 2009 .

[250]  Bin Su,et al.  “Capillary‐Bridge Lithography” for Patterning Organic Crystals toward Mode‐Tunable Microlaser Arrays , 2017, Advanced materials.

[251]  P. Günter,et al.  Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials. , 2008, The Journal of chemical physics.

[252]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[253]  Takayuki Morikawa,et al.  Self‐Waveguided Gain‐Narrowing of Blue Light Emission from Epitaxially Oriented p‐Sexiphenyl Crystals , 2001 .

[254]  J. Brédas,et al.  Electronic and Charge-Transport Properties of the Au3(CH3N═COCH3)3 Crystal: A Density Functional Theory Study , 2013 .

[255]  C. Adachi,et al.  Organic light-emitting diodes containing multilayers of organic single crystals , 2010 .

[256]  G. Day,et al.  A cocrystal strategy to tune the luminescent properties of stilbene-type organic solid-state materials. , 2011, Angewandte Chemie.

[257]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[258]  Chem. , 2020, Catalysis from A to Z.

[259]  Itaru Osaka,et al.  Thienoacene‐Based Organic Semiconductors , 2011, Advanced materials.

[260]  Oana D. Jurchescu,et al.  Interface‐Controlled, High‐Mobility Organic Transistors , 2007 .

[261]  R. Friend,et al.  Excitonic versus electronic couplings in molecular assemblies: The importance of non-nearest neighbor interactions. , 2009, The Journal of chemical physics.

[262]  Yang Yang,et al.  Single-Crystal Linear Polymers Through Visible Light–Triggered Topochemical Quantitative Polymerization , 2014, Science.

[263]  J. Gierschner,et al.  Color‐Tuned, Highly Emissive Dicyanodistyrylbenzene Single Crystals: Manipulating Intermolecular Stacking Interactions for Spontaneous and Stimulated Emission Characteristics , 2013 .

[264]  Masakazu Yamagishi,et al.  Patternable Solution‐Crystallized Organic Transistors with High Charge Carrier Mobility , 2011, Advanced materials.

[265]  Yoshio Taniguchi,et al.  Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer , 2005 .

[266]  I. Murtaza,et al.  A Unique Blend of 2-Fluorenyl-2-anthracene and 2-Anthryl-2-anthracence Showing White Emission and High Charge Mobility. , 2017, Angewandte Chemie.

[267]  Hu Wenping,et al.  Organic Cocrystal Optoelectronic Materials and Devices , 2014 .

[268]  Wenping Hu,et al.  25th Anniversary Article: Key Points for High‐Mobility Organic Field‐Effect Transistors , 2013, Advanced materials.

[269]  S. Mannsfeld,et al.  Controlled Deposition of Crystalline Organic Semiconductors for Field‐Effect‐Transistor Applications , 2009 .

[270]  J. Wagner,et al.  Molecular semiconductor blends: Microstructure, charge carrier transport, and application in photovoltaic cells , 2009 .

[271]  Chihaya Adachi,et al.  Ambipolar field-effect transistor of high photoluminescent material tetraphenylpyrene (TPPy) single crystal , 2007 .

[272]  J. Lam,et al.  Rational Design of Perylenediimide‐Substituted Triphenylethylene to Electron Transporting Aggregation‐Induced Emission Luminogens (AIEgens) with High Mobility and Near‐Infrared Emission , 2018 .

[273]  Shui-Tong Lee,et al.  A dinuclear aluminum 8-hydroxyquinoline complex with high electron mobility for organic light-emitting diodes , 2003 .

[274]  C. Adachi,et al.  Ambipolar light-emitting organic field-effect transistors using a wide-band-gap blue-emitting small molecule , 2007 .

[275]  J A Rogers,et al.  Hall effect in the accumulation layers on the surface of organic semiconductors. , 2005, Physical review letters.

[276]  G. Kranzelbinder,et al.  Organic solid-state lasers , 2000 .

[277]  Qidai Chen,et al.  Doped Organic Crystals with High Efficiency, Color-Tunable Emission toward Laser Application , 2009 .

[278]  Hongxiang Li,et al.  Millimeter‐Sized Molecular Monolayer Two‐Dimensional Crystals , 2011, Advanced materials.

[279]  N. Karl,et al.  Laser emission from an organic molecular crystal , 1972 .

[280]  P. Chan,et al.  Solution‐Processed Monolayer Organic Crystals for High‐Performance Field‐Effect Transistors and Ultrasensitive Gas Sensors , 2017 .

[281]  S. Hotta,et al.  Laser oscillation from hexagonal crystals of a thiophene/phenylene co-oligomer , 2006 .

[282]  Alán Aspuru-Guzik,et al.  Tuning charge transport in solution-sheared organic semiconductors using lattice strain , 2011, Nature.

[283]  P. Dubois,et al.  Controllable processes for generating large single crystals of poly(3-hexylthiophene). , 2012, Angewandte Chemie.

[284]  Daoben Zhu,et al.  Recent progress of high performance organic thin film field-effect transistors , 2011 .

[285]  Zhenan Bao,et al.  Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. , 2012, Accounts of chemical research.

[286]  Yoshio Taniguchi,et al.  Improved Crystal‐Growth and Emission Gain‐Narrowing of Thiophene/Phenylene Co‐Oligomers , 2003 .

[287]  Ifor D. W. Samuel,et al.  Organic semiconductor lasers. , 2007 .

[288]  Caroline Murawski,et al.  Efficiency Roll‐Off in Organic Light‐Emitting Diodes , 2013, Advanced materials.

[289]  J. Sancho‐García,et al.  Three-dimensional energy transport in highly luminescent host-guest crystals: a quantitative experimental and theoretical study. , 2007, Journal of the American Chemical Society.

[290]  Yong Sheng Zhao,et al.  Organic nanophotonics: from controllable assembly of functional molecules to low-dimensional materials with desired photonic properties. , 2014, Chemical Society reviews.

[291]  F. Wudl,et al.  Electrical conductivity by the bis(1,3-dithiole)-bis(1,3-dithiolium) system , 1972 .

[292]  W. Hu,et al.  Interface engineering for high-performance organic field-effect transistors. , 2012, Physical chemistry chemical physics : PCCP.

[293]  L. Feldman,et al.  Observation of long-range exciton diffusion in highly ordered organic semiconductors. , 2010, Nature materials.

[294]  F. Liu,et al.  Quinoline‐Flanked Diketopyrrolopyrrole Copolymers Breaking through Electron Mobility over 6 cm2 V−1 s−1 in Flexible Thin Film Devices , 2018, Advanced materials.

[295]  Daoben Zhu,et al.  Fullerene/sulfur-bridged annulene cocrystals: two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity. , 2013, Journal of the American Chemical Society.

[296]  T. Anthopoulos Electro-optical circuits based on light-sensing ambipolar organic field-effect transistors , 2007 .

[297]  S. Meskers,et al.  Bulk photovoltaic effect in an organic polar crystal. , 2014, Chemical communications.

[298]  Yuguang Ma,et al.  Controlling Supramolecular Microstructure to Realize Highly Efficient Nondoped Deep Blue Organic Light-Emitting Devices: The Role of Diphenyl Substituents in Distyrylbenzene Derivatives , 2008 .

[299]  Yunqi Liu,et al.  Field dependent and high light sensitive organic phototransistors based on linear asymmetric organic semiconductor , 2009 .

[300]  W. Hu,et al.  High Performance Nanocrystals of a Donor-Acceptor Conjugated Polymer , 2013 .

[301]  Peiyang Gu,et al.  Self-Healing Behavior in a Thermo-Mechanically Responsive Cocrystal during a Reversible Phase Transition. , 2017, Angewandte Chemie.

[302]  David Beljonne,et al.  Approaching disorder-free transport in high-mobility conjugated polymers , 2014, Nature.

[303]  Stephen R. Forrest,et al.  Prospects for electrically pumped organic lasers , 2002 .

[304]  S. Kelly,et al.  Liquid Crystals for Charge Transport, Luminescence, and Photonics , 2003 .

[305]  A. Aleshin,et al.  Mobility studies of field-effect transistor structures basedon anthracene single crystals , 2004 .

[306]  C. Svensson,et al.  A hydrogen-sensitive Pd-gate MOS transistor , 1975 .

[307]  Yao Liu,et al.  High performance photoswitches based on flexible and amorphous D-A polymer nanowires. , 2013, Small.

[308]  P. Magnante,et al.  Electroluminescence in Organic Crystals , 1963 .

[309]  V. Tung,et al.  Anisotropy in Organic Single‐Crystal Photovoltaic Characteristics , 2008 .

[310]  H. Xin,et al.  Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics. , 2015, Angewandte Chemie.

[311]  Oh Kyu Kwon,et al.  Tailor-made highly luminescent and ambipolar transporting organic mixed stacked charge-transfer crystals: an isometric donor-acceptor approach. , 2013, Journal of the American Chemical Society.

[312]  Huanli Dong,et al.  High performance organic semiconductors for field-effect transistors. , 2010, Chemical communications.

[313]  H S Kwok,et al.  Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. , 2001, Chemical communications.

[314]  D. Kell,et al.  Low cost, portable, fast multiparameter data acquisition system for organic transistor odour sensors , 2009 .

[315]  Huanli Dong,et al.  A cross-dipole stacking molecule of an anthracene derivative: integrating optical and electrical properties , 2015 .

[316]  Denis Remiens,et al.  Low driving voltages and memory effect in organic thin-film transistors with a ferroelectric gate insulator , 2001 .

[317]  Yichun Liu,et al.  Highly photosensitive thienoacene single crystal microplate transistors via optimized dielectric , 2015 .

[318]  J. Wuest,et al.  Molecular solids: Co-crystals give light a tune-up. , 2012, Nature chemistry.

[319]  Chunhui Xu,et al.  Tuning the Crystal Polymorphs of Alkyl Thienoacene via Solution Self‐Assembly Toward Air‐Stable and High‐Performance Organic Field‐Effect Transistors , 2015, Advanced materials.

[320]  P. Chan,et al.  A simulation-assisted solution-processing method for a large-area, high-performance C10-DNTT organic semiconductor crystal , 2016 .

[321]  Yoshio Taniguchi,et al.  Self-waveguided photoemission and lasing of organic crystalline wires obtained by an improved expitaxial growth method. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[322]  Alan J. Heeger,et al.  Semiconducting (Conjugated) Polymers as Materials for Solid‐State Lasers , 2000 .

[323]  Y. Tokura,et al.  High Mobility Organic Field-Effect Transistor Based on Hexamethylenetetrathiafulvalene with Organic Metal Electrodes , 2007 .

[324]  J S Brooks,et al.  Functionalized pentacene: improved electronic properties from control of solid-state order. , 2001, Journal of the American Chemical Society.

[325]  Wenping Hu Organic Optoelectronics: HU:ORG.OPTOELECTRONICS O-BK , 2013 .

[326]  T. Takenobu,et al.  The pursuit of electrically-driven organic semiconductor lasers , 2014 .

[327]  Soo Young Park,et al.  Organic Single Crystal Lasers: A Materials View , 2016 .

[328]  Hui Jiang,et al.  Single-crystal growth of organic semiconductors , 2013 .

[329]  Ye Cai,et al.  Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas , 2007, Nature.

[330]  Theo Siegrist,et al.  Physical vapor growth of organic semiconductors , 1998 .

[331]  Gargi Mukherjee,et al.  Polymorphs, Salts, and Cocrystals: What’s in a Name? , 2012 .

[332]  S. Mannsfeld,et al.  Organic single-crystalline p-n junction nanoribbons. , 2010, Journal of the American Chemical Society.

[333]  Bin Su,et al.  Positioning and joining of organic single-crystalline wires , 2015, Nature Communications.

[334]  W. Hu,et al.  Enhancing field-effect mobility and maintaining solid-state emission by incorporating 2,6-diphenyl substitution to 9,10-bis(phenylethynyl)anthracene , 2017 .

[335]  Liming Ding,et al.  Ternary organic solar cells offer 14% power conversion efficiency. , 2017, Science bulletin.

[336]  A. R. Brown,et al.  Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators , 1995, Science.

[337]  R. Capelli,et al.  Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. , 2010, Nature materials.

[338]  J.S. Kilby,et al.  Invention of the integrated circuit , 1976, IEEE Transactions on Electron Devices.

[339]  Toshikazu Yamada,et al.  On‐Substrate Synthesis of Molecular Conductor Films and Circuits , 2007 .

[340]  Dae Hee Lee,et al.  Novel Polymer Nanowire Crystals of Diketopyrrolopyrrole‐Based Copolymer with Excellent Charge Transport Properties , 2013, Advanced materials.

[341]  W. Hu,et al.  Space-Confined Strategy toward Large-Area Two-Dimensional Single Crystals of Molecular Materials. , 2018, Journal of the American Chemical Society.

[342]  Dae Hee Lee,et al.  High aspect ratio conjugated polymer nanowires for high performance field-effect transistors and phototransistors. , 2015, ACS nano.

[343]  Xiaomin Xu,et al.  Synthesis, solution-processed thin film transistors and solid solutions of silylethynylated diazatetracenes. , 2014, Chemical communications.

[344]  Yuning Li,et al.  A small bandgap (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6(3H,7H)-dione (IBDF) based polymer semiconductor for near-infrared organic phototransistors , 2017 .

[345]  W. Xu,et al.  Ordering rigid rod conjugated polymer molecules for high performance photoswitchers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[346]  W. Hu,et al.  Coaxial Organic p‐n Heterojunction Nanowire Arrays: One‐Step Synthesis and Photoelectric Properties , 2012, Advanced materials.