PDZ Proteins Interacting with C-Terminal GluR2/3 Are Involved in a PKC-Dependent Regulation of AMPA Receptors at Hippocampal Synapses

[1]  G. Collingridge,et al.  A role for protein kinase C in a form of metaplasticity that regulates the induction of long‐term potentiation at CA1 synapses of the adult rat hippocampus , 2000, The European journal of neuroscience.

[2]  R. Huganir,et al.  Phosphorylation of the AMPA Receptor Subunit GluR2 Differentially Regulates Its Interaction with PDZ Domain-Containing Proteins , 2000, The Journal of Neuroscience.

[3]  P. Osten,et al.  Mutagenesis Reveals a Role for ABP/GRIP Binding to GluR2 in Synaptic Surface Accumulation of the AMPA Receptor , 2000, Neuron.

[4]  M. Bear,et al.  Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity , 2000, Nature.

[5]  S. Mikawa,et al.  Disruption of AMPA receptor GluR2 clusters following long‐term depression induction in cerebellar Purkinje neurons , 2000, The EMBO journal.

[6]  Stuart G. Cull-Candy,et al.  Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype , 2000, Nature.

[7]  J. Henley,et al.  Interactions between AMPA receptors and intracellular proteins , 2000, Neuropharmacology.

[8]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[9]  D. Linden,et al.  Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis , 2000, Neuron.

[10]  Yu Tian Wang,et al.  Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization , 2000, Neuron.

[11]  R. Huganir,et al.  Control of GluR1 AMPA Receptor Function by cAMP-Dependent Protein Kinase , 2000, The Journal of Neuroscience.

[12]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[13]  G. Kerchner,et al.  AMPA receptor–PDZ interactions in facilitation of spinal sensory synapses , 1999, Nature Neuroscience.

[14]  Mark von Zastrow,et al.  Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity , 1999, Neuron.

[15]  Andreas Lüthi,et al.  Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction , 1999, Neuron.

[16]  S Matsuda,et al.  Phosphorylation of Serine‐880 in GluR2 by Protein Kinase C Prevents Its C Terminus from Binding with Glutamate Receptor‐Interacting Protein , 1999, Journal of neurochemistry.

[17]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[18]  R. Huganir,et al.  Characterization of the Glutamate Receptor-Interacting Proteins GRIP1 and GRIP2 , 1999, The Journal of Neuroscience.

[19]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[20]  G. Collingridge,et al.  Surface Expression of AMPA Receptors in Hippocampal Neurons Is Regulated by an NSF-Dependent Mechanism , 1999, Neuron.

[21]  S. Nakanishi,et al.  The protein kinase Cα binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits , 1999, Neuropharmacology.

[22]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[23]  P. Seeburg,et al.  EphrinB Ligands Recruit GRIP Family PDZ Adaptor Proteins into Raft Membrane Microdomains , 1999, Neuron.

[24]  R. Huganir,et al.  PDZ Proteins Bind, Cluster, and Synaptically Colocalize with Eph Receptors and Their Ephrin Ligands , 1998, Neuron.

[25]  Mark F Bear,et al.  Involvement of a Postsynaptic Protein Kinase A Substrate in the Expression of Homosynaptic Long-Term Depression , 1998, Neuron.

[26]  R. Nicoll,et al.  Effects of PKA and PKC on miniature excitatory postsynaptic currents in CA1 pyramidal cells. , 1998, Journal of neurophysiology.

[27]  Mark F Bear,et al.  NMDA Induces Long-Term Synaptic Depression and Dephosphorylation of the GluR1 Subunit of AMPA Receptors in Hippocampus , 1998, Neuron.

[28]  R. Abagyan,et al.  Novel Anchorage of GluR2/3 to the Postsynaptic Density by the AMPA Receptor–Binding Protein ABP , 1998, Neuron.

[29]  R. Huganir,et al.  Interaction of the N-Ethylmaleimide–Sensitive Factor with AMPA Receptors , 1998, Neuron.

[30]  J. Hell,et al.  SAP97 Is Associated with the α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptor GluR1 Subunit* , 1998, The Journal of Biological Chemistry.

[31]  G. Collingridge,et al.  NSF Binding to GluR2 Regulates Synaptic Transmission , 1998, Neuron.

[32]  P. Osten,et al.  The AMPA Receptor GluR2 C Terminus Can Mediate a Reversible, ATP-Dependent Interaction with NSF and α- and β-SNAPs , 1998, Neuron.

[33]  Andreas Lüthi,et al.  Modulation of AMPA receptor unitary conductance by synaptic activity , 1998, Nature.

[34]  E. Olson,et al.  Specific Interaction of the PDZ Domain Protein PICK1 with the COOH Terminus of Protein Kinase C-α* , 1997, The Journal of Biological Chemistry.

[35]  R. Nicoll,et al.  Synaptic Refractory Period Provides a Measure of Probability of Release in the Hippocampus , 1997, Neuron.

[36]  R. Nicoll,et al.  Two Distinct Forms of Long-Term Depression Coexist in CA1 Hippocampal Pyramidal Cells , 1997, Neuron.

[37]  Richard L. Huganir,et al.  GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors , 1997, Nature.

[38]  J. Roder,et al.  Enhanced LTP in Mice Deficient in the AMPA Receptor GluR2 , 1996, Neuron.

[39]  Sabina Hrabetova,et al.  Bidirectional Regulation of Protein Kinase Mζ in the Maintenance of Long-Term Potentiation and Long-Term Depression , 1996, The Journal of Neuroscience.

[40]  J. Sweatt,et al.  A biochemist's view of long-term potentiation. , 1996, Learning & memory.

[41]  R. Huganir,et al.  Characterization of Multiple Phosphorylation Sites on the AMPA Receptor GluR1 Subunit , 1996, Neuron.

[42]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[43]  T. Sacktor,et al.  Protein synthesis-dependent formation of protein kinase Mzeta in long- term potentiation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[45]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[46]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[47]  Y. Nishizuka Protein kinase C and lipid signaling for sustained cellular responses , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[48]  J Staudinger,et al.  PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system , 1995, The Journal of cell biology.

[49]  B. Sakmann,et al.  Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression , 1994, Neuron.

[50]  P Andersen,et al.  Specificity of protein kinase inhibitor peptides and induction of long-term potentiation. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Kullmann Amplitude fluctuations of , 1994, Neuron.

[52]  L. Wang,et al.  Modulation of AMPA/kainate receptors in cultured murine hippocampal neurones by protein kinase C. , 1994, The Journal of physiology.

[53]  D. Madison,et al.  Phorbol esters enhance synaptic transmission by a presynaptic, calcium‐dependent mechanism in rat hippocampus. , 1993, The Journal of physiology.

[54]  T. Sacktor,et al.  Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[55]  P. Parker,et al.  Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. , 1993, The Biochemical journal.

[56]  R. Malenka,et al.  An essential role for protein phosphatases in hippocampal long-term depression. , 1993, Science.

[57]  T. Soderling,et al.  Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II , 1993, Nature.

[58]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[59]  R. Malenka,et al.  Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus , 1992, Neuron.

[60]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J H Wang,et al.  Postsynaptic protein kinase C essential to induction and maintenance of long-term potentiation in the hippocampal CA1 region. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Muller,et al.  Induction of stable long-term potentiation in the presence of the protein kinase C antagonist staurosporine , 1992, Neuroscience Letters.

[63]  S. J. Chen,et al.  Persistent protein kinase activation in the maintenance phase of long-term potentiation. , 1991, The Journal of biological chemistry.

[64]  D. Faber,et al.  Applicability of the coefficient of variation method for analyzing synaptic plasticity. , 1991, Biophysical journal.

[65]  H. Coste,et al.  The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. , 1991, The Journal of biological chemistry.

[66]  A Routtenberg,et al.  Inhibition of protein kinase C blocks two components of LTP persistence, leaving initial potentiation intact , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  A. Tzagoloff,et al.  CBP7 codes for a co‐factor required in conjunction with a mitochondrial maturase for splicing of its cognate intervening sequence. , 1990, The EMBO journal.

[68]  K. Reymann,et al.  Activation of a K‐252b‐Sensitive Protein Kinase is Necessary for a Post‐Synaptic Phase of Long‐Term Potentiation in Area CA1 of Rat Hippocampus , 1990, The European journal of neuroscience.

[69]  P. Davis,et al.  Potent selective inhibitors of protein kinase C , 1989, FEBS letters.

[70]  Roberto Malinow,et al.  Persistent protein kinase activity underlying long-term potentiation , 1988, Nature.

[71]  Klaus G. Reymann,et al.  Polymyxin B, an inhibitor of protein kinase C, prevents the maintenance of synaptic long-term potentiation in hippocampal CA1 neurons , 1988, Brain Research.

[72]  Aryeh Routtenberg,et al.  Protein kinase C inhibitors eliminate hippocampal long-term potentiation , 1987, Brain Research.

[73]  D. Charon,et al.  The Bisindolylmaleimide GF 109203X Is a Potent and Selective Inhibitor of Protein Kinase C* , 2001 .

[74]  R. Huganir,et al.  Clustering of AMPA Receptors by the Synaptic PDZ Domain–Containing Protein PICK1 , 1999, Neuron.

[75]  D. Feldmeyer,et al.  Neurological dysfunctions in mice expressing different levels of the Q/R site–unedited AMPAR subunit GluR–B , 1999, Nature Neuroscience.

[76]  M. Bear,et al.  Long-term depression in hippocampus. , 1996, Annual review of neuroscience.

[77]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[78]  T. Teyler,et al.  Long-term potentiation. , 1987, Annual review of neuroscience.

[79]  R. H. Evans,et al.  Excitatory amino acid transmitters. , 1981, Annual review of pharmacology and toxicology.