ExaHyPE: An Engine for Parallel Dynamically Adaptive Simulations of Wave Problems

[1]  Tobias Weinzierl,et al.  Enclave Tasking for Discontinuous Galerkin Methods on Dynamically Adaptive Meshes , 2018, SIAM J. Sci. Comput..

[2]  Alice-Agnes Gabriel,et al.  Landers 1992 “Reloaded”: Integrative Dynamic Earthquake Rupture Modeling , 2019, Journal of Geophysical Research: Solid Earth.

[3]  Leonhard Rannabauer,et al.  A High-Order Discontinuous Galerkin Solver with Dynamic Adaptive Mesh Refinement to Simulate Cloud Formation Processes , 2019, PPAM.

[4]  Michael Dumbser,et al.  Studies on the energy and deep memory behaviour of a cache-oblivious, task-based hyperbolic PDE solver , 2018, Int. J. High Perform. Comput. Appl..

[5]  Wenbin Xu,et al.  Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults , 2018, Nature Communications.

[6]  Michael Dumbser,et al.  A simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave equations with complex topography , 2018, J. Comput. Phys..

[7]  Kenneth Duru,et al.  On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation , 2018, Computer Methods in Applied Mechanics and Engineering.

[8]  Tobias Weinzierl,et al.  The Peano Software—Parallel, Automaton-based, Dynamically Adaptive Grid Traversals , 2015, ACM Trans. Math. Softw..

[9]  Michael Dumbser,et al.  ADER-DG with a-posteriori finite-volume limiting to simulate tsunamis in a parallel adaptive mesh refinement framework , 2018, Computers & Fluids.

[10]  Michael Dumbser,et al.  Efficient Implementation of ADER Discontinuous Galerkin Schemes for a Scalable Hyperbolic PDE Engine , 2018, Axioms.

[11]  Michael Dumbser,et al.  A well balanced diffuse interface method for complex nonhydrostatic free surface flows , 2018, Computers & Fluids.

[12]  Kenneth Duru,et al.  A new discontinuous Galerkin spectral element method for elastic waves with physically motivated numerical fluxes , 2018, 1802.06380.

[13]  Tobias Weinzierl,et al.  A Case Study for a New Invasive Extension of Intel's Threading Building Blocks , 2018, COSH@HiPEAC.

[14]  Michael Dumbser,et al.  ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics , 2018, 1801.02839.

[15]  L. Rezzolla,et al.  Conformal and covariant Z4 formulation of the Einstein equations: strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes , 2017, 1707.09910.

[16]  Tobias Weinzierl,et al.  Quasi-matrix-free Hybrid Multigrid on Dynamically Adaptive Cartesian Grids , 2016, ACM Trans. Math. Softw..

[17]  Leonhard Rannabauer,et al.  Simulation of tsunamis with the exascale hyperbolic PDE engine ExaHyPE , 2018 .

[18]  Sven Köppel Towards an exascale code for GRMHD on dynamical spacetimes , 2018 .

[19]  Sven Koppel,et al.  Towards an exascale code for GRMHD on dynamical spacetimes , 2017, 1711.08221.

[20]  Alice-Agnes Gabriel,et al.  Extreme Scale Multi-Physics Simulations of the Tsunamigenic 2004 Sumatra Megathrust Earthquake , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[21]  Tobias Weinzierl,et al.  An Experience Report on (Auto-)tuning of Mesh-Based PDE Solvers on Shared Memory Systems , 2017, PPAM.

[22]  Michael Dumbser,et al.  A strongly hyperbolic first-order CCZ4 formulation of the Einstein equations and its solution with discontinuous Galerkin schemes , 2017 .

[23]  Michael Dumbser,et al.  Space-time adaptive ADER-DG schemes for dissipative flows: Compressible Navier-Stokes and resistive MHD equations , 2016, Comput. Phys. Commun..

[24]  Bram Reps,et al.  Complex Additive Geometric Multilevel Solvers for Helmholtz Equations on Spacetrees , 2015, ACM Trans. Math. Softw..

[25]  Alexander Heinecke,et al.  LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Generation , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[26]  Tobias Weinzierl,et al.  Algebraic-geometric matrix-free multigrid on dynamically adaptive Cartesian meshes , 2016, ArXiv.

[27]  Luciano Rezzolla,et al.  Extraction of gravitational waves in numerical relativity , 2016, Living reviews in relativity.

[28]  Bruno C. Mundim,et al.  Initial-data contribution to the error budget of gravitational waves from neutron-star binaries , 2016 .

[29]  Michael Dumbser,et al.  A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes , 2016, J. Comput. Phys..

[30]  Michael Dumbser,et al.  Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables , 2015, Computational astrophysics and cosmology.

[31]  Dirk Roose,et al.  Two particle-in-grid realisations on spacetrees , 2016, Parallel Comput..

[32]  Michael Dumbser,et al.  A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems , 2016, J. Comput. Phys..

[33]  Michael Dumbser,et al.  Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting , 2014, 1412.0081.

[34]  Michael Dumbser,et al.  A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws , 2014 .

[35]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[36]  M. Dumbser,et al.  High order space–time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems , 2013, 1304.5408.

[37]  Stéphane Clain,et al.  The Multidimensional Optimal Order Detection method in the three‐dimensional case: very high‐order finite volume method for hyperbolic systems , 2013 .

[38]  Michael Dumbser,et al.  A diffuse interface method for complex three-dimensional free surface flows , 2013 .

[39]  Jack Dongarra,et al.  Parallel Processing and Applied Mathematics , 2013, Lecture Notes in Computer Science.

[40]  Stéphane Clain,et al.  The MOOD method in the three-dimensional case: Very-High-Order Finite Volume Method for Hyperbolic Systems. , 2012 .

[41]  Miriam Mehl,et al.  Peano - A Traversal and Storage Scheme for Octree-Like Adaptive Cartesian Multiscale Grids , 2011, SIAM J. Sci. Comput..

[42]  Michael Dumbser,et al.  Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors , 2011, J. Comput. Phys..

[43]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[44]  V. P. Kolgan,et al.  Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics , 2011, J. Comput. Phys..

[45]  Luciano Rezzolla,et al.  Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes , 2011, 1103.2426.

[46]  Michael Dumbser,et al.  A simple two-phase method for the simulation of complex free surface flows , 2011 .

[47]  Stéphane Clain,et al.  Multi-dimensional Optimal Order Detection (MOOD) — a Very High-Order Finite Volume Scheme for Conservation Laws on Unstructured Meshes , 2011 .

[48]  Francis X. Giraldo,et al.  An adaptive discontinuous Galerkin method for modeling cumulus clouds , 2010 .

[49]  Tobias Weinzierl,et al.  A Blocking Strategy on Multicore Architectures for Dynamically Adaptive PDE Solvers , 2009, PPAM.

[50]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[51]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions , 2008, J. Sci. Comput..

[52]  J. Ollitrault Relativistic hydrodynamics , 2007 .

[53]  James Reinders,et al.  Intel® threading building blocks , 2008 .

[54]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[55]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[56]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[57]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[58]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[59]  Christopher R. Bradley,et al.  Memory-Efficient Simulation of Anelastic Wave Propagation , 2001 .

[60]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[61]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[62]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[63]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[64]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[65]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[66]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[67]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[68]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[69]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[70]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[71]  P. Harwood Michael , 1985 .

[72]  S. Papson,et al.  “Model” , 1981 .

[73]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[74]  F. Curtis Michel,et al.  Accretion of matter by condensed objects , 1971 .