Broadcast strategy for delay-limited communication over fading channels

[1]  Shlomo Shamai,et al.  Variable-Rate Channel Capacity , 2010, IEEE Transactions on Information Theory.

[2]  Patrick P. Bergmans,et al.  Random coding theorem for broadcast channels with degraded components , 1973, IEEE Trans. Inf. Theory.

[3]  Shlomo Shamai,et al.  Secret Writing on Dirty Paper: A Deterministic View , 2012, IEEE Trans. Inf. Theory.

[4]  J. Nicholas Laneman,et al.  Writing on Dirty Paper with Resizing and its Application to Quasi-Static Fading Broadcast Channels , 2007, 2007 IEEE International Symposium on Information Theory.

[5]  Sergio Verdú,et al.  On channel capacity per unit cost , 1990, IEEE Trans. Inf. Theory.

[6]  Shlomo Shamai,et al.  A broadcast approach for a single-user slowly fading MIMO channel , 2003, IEEE Trans. Inf. Theory.

[7]  Yossef Steinberg,et al.  Coding for the degraded broadcast channel with random parameters, with causal and noncausal side information , 2005, IEEE Transactions on Information Theory.

[8]  D. Blackwell,et al.  The Capacity of a Class of Channels , 1959 .

[9]  David Burshtein,et al.  On the Fading-Paper Achievable Region of the Fading MIMO Broadcast Channel , 2008, IEEE Transactions on Information Theory.

[10]  Shlomo Shamai,et al.  The broadcast approach under mixed delay constraints , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[11]  Shlomo Shamai,et al.  Multi-layer broadcasting hybrid-ARQ strategies for block fading channels , 2008, IEEE Transactions on Wireless Communications.

[12]  Shlomo Shamai,et al.  Achievable Rates with Imperfect Transmitter Side Information Using a Broadcast Transmission Strategy , 2008, IEEE Transactions on Wireless Communications.

[13]  János Körner,et al.  General broadcast channels with degraded message sets , 1977, IEEE Trans. Inf. Theory.

[14]  Gregory W. Wornell,et al.  Secure Broadcasting Over Fading Channels , 2008, IEEE Transactions on Information Theory.

[15]  Philip A. Whiting,et al.  Broadcasting over uncertain channels with decoding delay constraints , 2006, IEEE Transactions on Information Theory.

[16]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[17]  Patrick P. Bergmans,et al.  A simple converse for broadcast channels with additive white Gaussian noise (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[18]  A. Goldsmith,et al.  Capacity definitions and coding strategies for general channels with receiver side information , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[19]  Shlomo Shamai,et al.  A broadcast strategy for the Gaussian slowly fading channel , 1997, Proceedings of IEEE International Symposium on Information Theory.

[20]  Andrea J. Goldsmith,et al.  Generalizing Capacity: New Definitions and Capacity Theorems for Composite Channels , 2010, IEEE Transactions on Information Theory.

[21]  Lizhong Zheng,et al.  Writing on Fading Paper and Causal Transmitter CSI , 2006, 2006 IEEE International Symposium on Information Theory.

[22]  Tie Liu,et al.  An Extremal Inequality Motivated by Multiterminal Information-Theoretic Problems , 2006, IEEE Transactions on Information Theory.

[23]  David Tse,et al.  Optimal power allocation over parallel Gaussian broadcast channels , 1997, Proceedings of IEEE International Symposium on Information Theory.

[24]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[25]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[26]  Shlomo Shamai,et al.  Worst-case expected-rate loss of slow-fading channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[27]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[28]  Uri Erez,et al.  On the robustness of dirty paper coding , 2010, IEEE Transactions on Communications.

[29]  Hua Wang,et al.  Gaussian Interference Channel Capacity to Within One Bit , 2007, IEEE Transactions on Information Theory.

[30]  Suhas N. Diggavi,et al.  Successive Refinement Via Broadcast: Optimizing Expected Distortion of a Gaussian Source Over a Gaussian Fading Channel , 2008, IEEE Transactions on Information Theory.