Line‐by‐line radiative excitation model for the non‐equilibrium atmosphere: Application to CO2 15‐μm emission

We describe a new line-by-line (LBL) algorithm for radiative excitation in infrared bands in a non-local thermodynamic equilibrium (non-LTE) planetary atmosphere. Specifically, we present a predictive model for the terrestrial CO[sub 2] 15[mu]m emission that incorporates this generic algorithm, and validate the model by comparing its results with emission spectra obtained in a limb-scanning rocket experiment. The unique features of the reactive-excitation algorithm are discussed in this paper. These features contribute to accurate radiative transfer results and reliable atmospheric cooling rates. For altitudes above 40 km, we present results of model calculations of CO[sub 2]([nu][sub 2]) vibrational temperatures, 15-[mu]m limb spectral radiances, and cooling rates, for the main band and for weaker hot and isotopic bands. We calculate the excitation and deexcitation rates due to different processes. We compare the predicted limb radiance with earthlimb spectral scans obtained in the SPIRE rocket experiment over Poker Flat, Alaska, and get excellent agreement as a function of both wavelength and tangent height. This constitutes the first validation of a long-wavelength CO[sub 2] non-LTE emission model using an actual atmospheric data set and verifies the existence of certain aeronomic features that have only been predicted by models and constrains the previously unknown valuemore » of the very important rate constant for deactivation of the CO[sub 2] bending mode by atomic oxygen to the range of 5-6 [times] 10[sup [minus]12] cm[sup 3]/(mol s) at mesospheric and lower thermospheric temperatures. We discuss the significance of this large value for terrestrial and Venusian thermospheres and the convergence rate of the iterative scheme, the model's sensitivity to the background atmosphere, the importance of the lower boundary surface contribution, and the effects of the choice of the layer thickness and the neglect of line overlap. 86 refs., 20 figs., 5 tabs.« less

[1]  M. López‐Puertas,et al.  Vibrational Temperatures and Radiative Cooling of the Co2 15 Mum Bands In the Middle Atmosphere , 1992 .

[2]  G. Keating,et al.  Isolation of major Venus thermospheric cooling mechanism and implications for earth and Mars , 1992 .

[3]  R. Roble,et al.  Comparative terrestrial planet thermospheres: 1. Solar cycle variation of global mean temperatures , 1991 .

[4]  S. Adler-Golden,et al.  Upper atmospheric infrared radiance from CO2 and NO observed during the SPIRIT 1 Rocket Experiment , 1991 .

[5]  P. Wintersteiner,et al.  Role of carbon dioxide in cooling planetary thermospheres , 1990 .

[6]  D. Strobel,et al.  On the role of vibration‐vibration transitions in radiative cooling of the CO2 15 μm band around the mesopause , 1990 .

[7]  John W. Meriwether,et al.  A review of the photochemistry of selected nightglow emissions from the mesopause , 1989 .

[8]  M. López-Puertas,et al.  Carbon dioxide 4.3‐μm emission in the Earth's atmosphere: A comparison between Nimbus 7 SAMS measurements and non‐local thermodynamic equilibrium radiative transfer calculations , 1989 .

[9]  A. Hedin Atomic oxygen modeling in the upper thermosphere , 1988 .

[10]  V. Fomichev,et al.  Net radiative heating in the middle atmosphere , 1988 .

[11]  J. Vercheval,et al.  Global results of grille spectrometer experiment on board Spacelab 1 , 1988 .

[12]  J. Fox Heating efficiencies in the thermosphere of venus reconsidered , 1988 .

[13]  R. Picard,et al.  4.3 µm Radiation in the Aurorally Dosed Lower Thermosphere: Modeling and Analysis , 1988 .

[14]  A Goldman,et al.  The HITRAN database: 1986 edition. , 1987, Applied optics.

[15]  Raymond G. Roble,et al.  On the global mean structure of the thermosphere , 1987 .

[16]  D. Murtagh,et al.  Measurements of odd oxygen in the polar region on 10 February 1984 during MAP/WINE , 1987 .

[17]  A. Hedin MSIS‐86 Thermospheric Model , 1987 .

[18]  R. Dickinson,et al.  Radiative cooling in the NLTE region of the mesosphere and lower thermosphere-Global energy balance , 1987 .

[19]  A. S. Zachor,et al.  Interpretation of infrared measurements of the high-latitude thermosphere from a rocket-borne interferometer , 1987 .

[20]  Fredric W. Taylor,et al.  A non-LTE radiative transfer model for infrared bands in the middle atmosphere. I. Theoretical basis and application to CO2 15 μm bands , 1986 .

[21]  Fredric W. Taylor,et al.  A non-LTE radiative transfer model for infrared bands in the middle atmosphere. II. CO2 (2.7 and 4.3 μm) and water vapour (6.3 μm) bands and N2(1) and O2(1) vibrational levels , 1986 .

[22]  V. Fomichev,et al.  Radiative cooling of the 30–110 km atmospheric layer , 1986 .

[23]  F. X. Kneizys,et al.  AFGL atmospheric constituent profiles (0-120km) , 1986 .

[24]  L S Rothman,et al.  Infrared energy levels and intensities of carbon dioxide. Part 3. , 1978, Applied optics.

[25]  R. Dickinson,et al.  Venus mesosphere and thermosphere: 1. Heat budget and thermal structure , 1986 .

[26]  D. Hollenbach,et al.  The thermal structure of the dayside upper atmosphere of venus above 125 km , 1985 .

[27]  A. T. Stair,et al.  Observations of limb radiance with Cryogenic Spectral Infrared Rocket Experiment , 1985 .

[28]  P. Wintersteiner,et al.  CO2 component of daytime Earth limb emission at 2.7 micrometers , 1985 .

[29]  B. Green,et al.  The analysis of SPIRE measurements of atmospheric limb CO2(ν2) fluorescence , 1985 .

[30]  P P Wintersteiner,et al.  Update of an Efficient Computer Code (NLTE) to Calculate Emission and Transmission of Radiation through Non-Equilibrium Atmospheres. , 1985 .

[31]  J. J. Barnett,et al.  Middle Atmosphere Reference Model Derived from Satellite Data , 1985 .

[32]  W. Sharp Upper limits to [O] in the lower thermosphere from airglow , 1985 .

[33]  C. Simpson,et al.  Rate constants for the deactivation of the 15 μm band of carbon dioxide by the collision partners CH3F, CO2, N2, Ar and Kr over the temperature range 300 to 150 K , 1985 .

[34]  R. Dickinson Infrared radiative cooling in the mesosphere and lower thermosphere , 1984 .

[35]  Guy Brasseur,et al.  Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere , 1984 .

[36]  B. Garside,et al.  Dynamics of the CO2 lower laser levels as measured with a tunable diode laser , 1983 .

[37]  T. C. James,et al.  SPIRE data evaluation and nuclear ir fluorescence processes. Final report 2 Jan 79-30 Nov 82 , 1982 .

[38]  G. Caledonia,et al.  NO infrared radiation in the upper atmosphere , 1982 .

[39]  C. Leovy,et al.  An accurate radiative heating and cooling algorithm for use in a dynamical model of the middle atmosphere , 1982 .

[40]  M. Marov,et al.  Numerical modelling of the thermospheric heat budget , 1982 .

[41]  E. Weitz,et al.  A laser-induced fluorescence study of energy transfer between the symmetric stretching and bending modes of CO2 , 1981 .

[42]  D. Offermann,et al.  Neutral gas composition measurements between 80 and 120 km , 1981 .

[43]  R. Nadile,et al.  Carbon dioxide /V2/ radiance results using a new nonequilibrium model , 1981 .

[44]  D. C. Allen,et al.  Low temperature fluorescence studies of the deactivation of the bend—stretch manifold of CO2 , 1980 .

[45]  Ian W. M. Smith,et al.  Vibrational relaxations of NO by atomic oxygen , 1979 .

[46]  J. Taine,et al.  A photoacoustic study of the collisional deactivation of the first vibrational levels of CO2 by N2 and CO , 1979 .

[47]  C. R. Philbrick,et al.  A dynamic model of the mesosphere and lower thermosphere , 1979 .

[48]  J. Taine,et al.  A photoacoustic study of intramolecular energy transfer in CO2 deactivated by monatomic gases between 153 and 393 K , 1979 .

[49]  J. Taine,et al.  A photoacoustic study of the collisional deactivation of CO2 by N2, CO and O2 between 160 and 375 K , 1978 .

[50]  H. Trinks,et al.  Carbon dioxide concentrations in the lower thermosphere , 1978 .

[51]  D. Offermann,et al.  Neutral composition measurements between 90‐ and 220‐km altitude by rocket‐borne mass spectrometer , 1978 .

[52]  A. T. Stair,et al.  Spire -- Spectral Infrared Experiment , 1977, Optics & Photonics.

[53]  J. Kumer Atmospheric CO2 and N2 vibrational temperatures at 40‐ to 140‐km altitude , 1977 .

[54]  John B. Kumer Theory of the CO2 4.3-µm aurora and related phenomena , 1977 .

[55]  J. Simmie,et al.  The vibrational deactivation of the bending mode of CO2 by O2 and by N2 , 1977 .

[56]  D. C. Allen,et al.  Vibrational deactivation of the bending mode of CO2 measured between 1500 K and 150 K , 1977 .

[57]  C. Moore,et al.  Relaxation of CO2(1001), CO2(0201), and N2O(1001) vibrational levels by near‐resonant V→V energy transfer , 1975 .

[58]  S. Tsuchiya,et al.  Vibration-to-Vibration Energy Transfer of CO 2 (00 0 1) with N 2 and CO at Low Temperatures , 1975 .

[59]  M. Buchwald,et al.  Vibrational relaxation of CO2(001) by atoms , 1975 .

[60]  S. J. Thomas,et al.  Rate constants for the C O 2 02 0 0- 10 0 0 relaxation , 1975 .

[61]  A. T. Stair,et al.  Rocketborne observations of atmospheric infrared emissions in the auroral region , 1975 .

[62]  R. L. Taylor Energy Transfer Processes in the Stratosphere , 1974 .

[63]  T. C. James,et al.  CO2(001) and N2 vibrational temperatures in the 50 ≲ z ≲ 130 km altitude range , 1974 .

[64]  D. Offermann,et al.  Thermospheric density and composition as determined by a mass spectrometer with cryo ion source , 1973 .

[65]  T. C. James,et al.  Fluorescence of CO2 near 4.3 microns: Application to daytime limb radiance calculations , 1973 .

[66]  E. Stark Measurement of the 10°0–02°0 relaxation rate in CO2 , 1973 .

[67]  K. Bulthuis,et al.  Relaxation of the 1000 lower laser level in CO2 , 1973 .

[68]  R. A. McClatchey,et al.  AFCRL atmospheric absorption line parameters compilation , 1973 .

[69]  J. Stephenson,et al.  Temperature Dependence of Nearly Resonant Vibration → Vibration Energy Transfer in CO2 Mixtures , 1972 .

[70]  K. N. Seeber Radiative and Collisional Transitions between Coupled Vibrational Modes of CO2 , 1971 .

[71]  A. D. Wood,et al.  Deactivation of Vibrationally Excited Carbon Dioxide (ν3) by Collisions with Carbon Dioxide or with Nitrogen , 1969 .

[72]  J. London,et al.  Infrared Radiative Cooling in the Middle Atmosphere (30–110 km) , 1969 .

[73]  J. Houghton Absorption and emission by carbon‐dioxide in the mesosphere , 1969 .

[74]  A. R. Curtis,et al.  Thermal radiation in the upper atmosphere , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[75]  A. R. Curtis The computation of radiative heating rates in the atmosphere , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.