Stability analysis in multiwall carbon nanotube bundle interconnects

Abstract Based on the transmission line model (TLM), we present an exact and general transfer function formula, useful for both single multiwall carbon nanotube (MWCNT) and MWCNT bundle interconnects. Using the standard parameters for 22-nm technology node we perform the Nyquist stability analysis, to investigate the dependence of the degree of relative stability for both single and bundle interconnects on the number of walls in each MWCNT its geometry and also on the bundle geometry. The numerical results, for 1- to 30-μm long interconnects composed of 3- to 7-wall-CNTs, show that by increasing the length or the outer shell diameter, both single and bundle interconnects become more stable. On the other hand, an increase in the number of walls, keeping the outer shell diameter constant, increases the relative stability of the single MWCNT and decreases that of the bundle interconnects.

[1]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[2]  H. Jin,et al.  Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions , 2008 .

[3]  J. Meindl,et al.  Performance Modeling for Single- and Multiwall Carbon Nanotubes as Signal and Power Interconnects in Gigascale Systems , 2008, IEEE Transactions on Electron Devices.

[4]  Jinyun Liu,et al.  Synthesis of close-packed multi-walled carbon nanotube bundles using Mo as catalyst , 2009 .

[5]  A. Kawabata,et al.  Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles , 2006, 2006 International Interconnect Technology Conference.

[6]  A. Kawabata,et al.  Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells [IC interconnect applications] , 2005, Proceedings of the IEEE 2005 International Interconnect Technology Conference, 2005..

[8]  M. Dresselhaus,et al.  Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment , 2004 .

[9]  K. Banerjee,et al.  Carbon nanotube interconnects: implications for performance, power dissipation and thermal management , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[10]  Reza Sarvari,et al.  Accurate analysis of carbon nanotube interconnects using transmission line model , 2009 .

[11]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  G. Duesberg,et al.  Carbon nanotubes for interconnect applications , 2002, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[13]  P. Strasser,et al.  Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts. , 2010, Physical chemistry chemical physics : PCCP.

[14]  M. Meyyappan,et al.  Bottom-up approach for carbon nanotube interconnects , 2003 .

[15]  In‐Yup Jeon,et al.  Stability of multi-walled carbon nanotubes in commonly used acidic media , 2012 .

[16]  Gerhard Jakob,et al.  Element-specific magnetic moments from core-absorption magnetic circular dichroism of the doped Heusler alloy Co2Cr0.6Fe0.4Al , 2003 .

[17]  Chang Q. Sun,et al.  Dimension, strength, and chemical and thermal stability of a single C-C bond in carbon nanotubes , 2003 .

[18]  K. Banerjee,et al.  Circuit Modeling and Performance Analysis of Multi-Walled Carbon Nanotube Interconnects , 2008, IEEE Transactions on Electron Devices.

[19]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[20]  Jing Kong,et al.  High-speed graphene interconnects monolithically integrated with CMOS ring oscillators operating at 1.3GHz , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[21]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[22]  Zhu Changchun,et al.  Improvement of luminescent stability from carbon nanotube field emission display based on printed CNT film , 2006 .

[23]  Kaustav Banerjee,et al.  Interconnect challenges for nanoscale electronic circuits , 2004 .

[24]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[25]  S. Nasiri,et al.  TIME DOMAIN ANALYSIS OF GRAPHENE NANORIBBON INTERCONNECTS BASED ON TRANSMISSION LINE MODEL , 2012 .

[26]  P. Burke Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes , 2002 .

[27]  Deformations and thermal stability of carbon nanotube ropes , 2003, IEEE Transactions on Nanotechnology.

[28]  Kaustav Banerjee,et al.  Performance analysis of carbon nanotube interconnects for VLSI applications , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[29]  J. A. Buck,et al.  Engineering Electromagnetics , 1967 .

[30]  Wei Zhang,et al.  Effects of tube diameter and chirality on the stability of single-walled carbon nanotubes under ion irradiation , 2009 .

[31]  D. Srivastava,et al.  Tensile strength of carbon nanotubes under realistic temperature and strain rate , 2002, cond-mat/0202513.

[32]  András Jánossy,et al.  “高磁場Gd3+電子スピン共鳴により測定したYBa2Cu4O8における磁場誘起低エネルギースピン励起”へのコメント , 2001 .

[33]  Franz Kreupl,et al.  Carbon nanotubes in interconnect applications , 2002 .

[34]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[35]  Kaustav Banerjee,et al.  Are carbon nanotubes the future of VLSI interconnections? , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[36]  S. Nasiri,et al.  Stability Analysis in Graphene Nanoribbon Interconnects , 2010, IEEE Electron Device Letters.

[37]  W. Yin,et al.  Transfer Function and Compact Distributed Rlc Models of Carbon Nanotube Bundle Interconnets and Their Applications , 2010 .

[38]  Xiaopeng Huang,et al.  Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830 K , 2011 .

[39]  D. Glattli,et al.  Determination of the intershell conductance in multiwalled carbon nanotubes. , 2004, Physical review letters.