Varying-Coefficient Marginal Models and Applications in Longitudinal Data Analysis

We consider a class of nonparametric marginal models in which the regression coefficients are assumed to be time-varying smooth functions. Such models are appealing in longitudinal data analysis to characterize the timedependent effects of covariates on the expected value of the response variable. A local quasi-likelihood method is employed to estimate the coefficient functions, based on the nonparametric technique of local polynomial kernel regression. We establish the asymptotic distribution theory for the estimators considered. We conduct Monte Carlo simulation studies to compare two types of kernel-based GEE methods with global and local variance structures, respectively. We illustrate the proposed models via three real-world data sets from a clinical trial of multiple sclerosis, a quality of life study in chemotherapeutic treatments on breast cancer, and a genomic fine-scale mapping association study on chromosomal region 5q31 for Crohn’s disease.

[1]  Zhiliang Ying,et al.  Semiparametric and Nonparametric Regression Analysis of Longitudinal Data , 2001 .

[2]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[3]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[4]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[5]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[6]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[7]  Ananda Sen,et al.  The Theory of Dispersion Models , 1997, Technometrics.

[8]  J. Witte,et al.  Hierarchical modeling of linkage disequilibrium: genetic structure and spatial relations. , 2003, American journal of human genetics.

[9]  R. Carroll,et al.  Marginal Longitudinal Nonparametric Regression , 2002 .

[10]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[11]  Jianqing Fan,et al.  Efficient Estimation and Inferences for Varying-Coefficient Models , 2000 .

[12]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[13]  R. Carroll,et al.  Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .

[14]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[15]  J Petkau,et al.  Longitudinal analyses for magnetic resonance imaging outcomes in multiple sclerosis clinical trials. , 1997, Journal of biopharmaceutical statistics.

[16]  Chin-Tsang Chiang,et al.  Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables , 2001 .

[17]  D. Ruppert Empirical-Bias Bandwidths for Local Polynomial Nonparametric Regression and Density Estimation , 1997 .

[18]  A. W. Edwards The Measure of Association in a 2 × 2 Table , 1963 .

[19]  Martin Crowder,et al.  On Consistency and Inconsistency of Estimating Equations , 1986, Econometric Theory.

[20]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[21]  Martin Crowder,et al.  On the use of a working correlation matrix in using generalised linear models for repeated measures , 1995 .

[22]  Runze Li,et al.  Quadratic Inference Functions for Varying‐Coefficient Models with Longitudinal Data , 2006, Biometrics.

[23]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[24]  Robert Tibshirani,et al.  Generalized additive models for longitudinal data , 1998 .

[25]  Kani Chen,et al.  Local polynomial regression analysis of clustered data , 2005 .

[26]  Jiayang Sun,et al.  Confidence bands in generalized linear models , 2000 .

[27]  M. Daly,et al.  High-resolution haplotype structure in the human genome , 2001, Nature Genetics.

[28]  Thomas W. Yee,et al.  Additive extensions to generalized estimating equation methods , 1996 .