Structure Transition Mechanism of Single-Crystalline Silicon, g-C3N4, and Diamond Nanocone Arrays Synthesized by Plasma Sputtering Reaction Deposition

Single-crystalline silicon, g-C3N4, and diamond nanocone arrays were synthesized on nickel-covered silicon (100) substrates by a novel method of plasma sputtering reaction deposition. The experimental results show that the morphologies, structures, and composition of the as-grown nanocones strongly depend on the ratios of the inlet mixed gases. The silicon, g-C3N4, and diamond nanocone arrays could be grown at the CH4/(N2 + H2) ratios of about 1/20–1/10, 1/150–1/60, and 0, respectively. The analyses of the optical emission spectra from the discharged plasma indicate that the inlet methane controls the growth of the nanocones by suppressing the H+-sputtering effect to adjust the amounts of the silicon, carbon, and nitrogen atoms attaining the substrate, which determines the composition, structures, and crystallinity of the grown nanocones.

[1]  Yongfa Zhu,et al.  Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method. , 2015, Physical chemistry chemical physics : PCCP.

[2]  Jianrong Qiu,et al.  Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine , 2013, Scientific Reports.

[3]  N. Lavrik,et al.  Large scale atmospheric pressure chemical vapor deposition of graphene , 2013 .

[4]  Zongfu Yu,et al.  Hybrid silicon nanocone-polymer solar cells. , 2012, Nano letters.

[5]  M. Monthioux,et al.  New carbon cone nanotip for use in a highly coherent cold field emission electron microscope , 2012 .

[6]  M. Antonietti,et al.  Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. , 2012, Physical chemistry chemical physics : PCCP.

[7]  G. Yang,et al.  ZnO nanocone: application in fabrication of the smallest whispering gallery optical resonator. , 2011, Nanoscale.

[8]  J. Stuchlík,et al.  The structure and growth mechanism of Si nanoneedles prepared by plasma-enhanced chemical vapor deposition , 2010, Nanotechnology.

[9]  G. D. Nessim,et al.  Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. , 2010, Nanoscale.

[10]  Shansheng Yu,et al.  Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. , 2010, Nanoscale.

[11]  Xiaofeng Xu,et al.  Self-Assembled Fabrication and Characterization of Vertically Aligned Binary CN Nanocone Arrays , 2010 .

[12]  K. Ostrikov,et al.  Tailoring carbon nanotips in the plasma-assisted chemical vapor deposition: Effect of the process parameters , 2009 .

[13]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[14]  P. Schuck,et al.  Probe tips functionalized with colloidal nanocrystal tetrapods for high-resolution atomic force microscopy imaging. , 2008, Small.

[15]  S. Liou,et al.  Iron–platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging , 2008, Nanotechnology.

[16]  Shekhar Bhansali,et al.  Electrochemical biosensor for targeted detection in blood using aligned Au nanowires , 2007 .

[17]  Tae Il Lee,et al.  Investigation of the transition between glow and streamer discharges in atmospheric air , 2006 .

[18]  Jun Yu Li,et al.  Field emission properties of carbon coated Si nanocone arrays on porous silicon , 2005 .

[19]  Qiaoqin Yang,et al.  Simultaneous growth of well-aligned diamond and graphitic carbon nanostructures through graphite etching , 2005 .

[20]  F. Kleitz,et al.  Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. , 2003, Chemical communications.

[21]  Kenichiro Koga,et al.  Formation of ordered ice nanotubes inside carbon nanotubes , 2001, Nature.

[22]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[23]  Seiji Akita,et al.  Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid , 1999 .

[24]  S. R. Silva,et al.  Characterization of a‐C:H:N deposition from CH4/N2 rf plasmas using optical emission spectroscopy , 1996 .

[25]  I. Lin,et al.  Enhancement of electron emission efficiency of Mo tips by diamondlike carbon coatings , 1996 .

[26]  S. Vepřek,et al.  Plasma chemical vapor deposition and properties of hard C3N4 thin films , 1995 .

[27]  Steven Frederick Durrant,et al.  Mechanisms of polymer film deposition from r.f. discharges of acetylene, nitrogen and helium mixtures , 1995 .

[28]  M. Aslam,et al.  Field emission from p‐type polycrystalline diamond films , 1995 .

[29]  Cho,et al.  Tip-surface interactions in scanning tunneling microscopy. , 1993, Physical review letters.