A note on the limited stability of surface spline interpolation

Given a finite subset Ξ ⊂ Rd and data f|Ξ, the surface spline interpolant to the data f|Ξ is a function s which minimizes a certain seminorm subject to the interpolation conditions s|Ξ = f|Ξ. It is known that surface spline interpolation is stable on the Sobolev space Wm in the sense that ||s||L∞(Ω) ≤ const ||f|| Wm, where m is an integer parameter which specifies the surface spline. In this note we show that surface spline interpolation is not stable on Wγ whenever γ < m - 1/2.

[1]  Michael J. Johnson,et al.  The L2-approximation order of surface spline interpolation , 2001, Math. Comput..

[2]  J. Duchon Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^m$-splines , 1978 .

[3]  J. Duchon Spline minimizing rotation-invariant seminorms in Sobolev spaces , 1977 .

[4]  H. Triebel Theory of Function Spaces III , 2008 .

[5]  H. Triebel Theory Of Function Spaces , 1983 .

[6]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.

[7]  Joseph D. Ward,et al.  Scattered Data Interpolation on Spheres: Error Estimates and Locally Supported Basis Functions , 2002, SIAM J. Math. Anal..

[8]  Michael J. Johnson A Bound on the Approximation Order of Surface Splines , 1998 .

[9]  C. D. Boor On bounding spline interpolation , 1975 .

[10]  C. Bennett,et al.  Interpolation of operators , 1987 .

[11]  G. Temple,et al.  GENERALIZED FUNCTIONS, VOL. I , 1965 .

[12]  Joseph D. Ward,et al.  Scattered-Data Interpolation on Rn: Error Estimates for Radial Basis and Band-Limited Functions , 2004, SIAM J. Math. Anal..

[13]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[14]  R. A. Brownlee,et al.  Approximation orders for interpolation by surface splines to rough functions , 2004, 0705.4281.

[15]  Will Light,et al.  Spaces of distributions, interpolation by translates of a basis function and error estimates , 1999, Numerische Mathematik.