A note on the limited stability of surface spline interpolation
暂无分享,去创建一个
[1] Michael J. Johnson,et al. The L2-approximation order of surface spline interpolation , 2001, Math. Comput..
[2] J. Duchon. Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^m$-splines , 1978 .
[3] J. Duchon. Spline minimizing rotation-invariant seminorms in Sobolev spaces , 1977 .
[4] H. Triebel. Theory of Function Spaces III , 2008 .
[5] H. Triebel. Theory Of Function Spaces , 1983 .
[6] 곽순섭,et al. Generalized Functions , 2006, Theoretical and Mathematical Physics.
[7] Joseph D. Ward,et al. Scattered Data Interpolation on Spheres: Error Estimates and Locally Supported Basis Functions , 2002, SIAM J. Math. Anal..
[8] Michael J. Johnson. A Bound on the Approximation Order of Surface Splines , 1998 .
[9] C. D. Boor. On bounding spline interpolation , 1975 .
[10] C. Bennett,et al. Interpolation of operators , 1987 .
[11] G. Temple,et al. GENERALIZED FUNCTIONS, VOL. I , 1965 .
[12] Joseph D. Ward,et al. Scattered-Data Interpolation on Rn: Error Estimates for Radial Basis and Band-Limited Functions , 2004, SIAM J. Math. Anal..
[13] Jean Duchon,et al. Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.
[14] R. A. Brownlee,et al. Approximation orders for interpolation by surface splines to rough functions , 2004, 0705.4281.
[15] Will Light,et al. Spaces of distributions, interpolation by translates of a basis function and error estimates , 1999, Numerische Mathematik.