Formal concept analysis on fuzzy sets
暂无分享,去创建一个
[1] Andrei Popescu,et al. Non-dual fuzzy connections , 2004, Arch. Math. Log..
[2] Radim Bělohlávek,et al. Fuzzy Relational Systems: Foundations and Principles , 2002 .
[3] Tomasz Kubiak,et al. A non-commutative and non-idempotent theory of quantale sets , 2011, Fuzzy Sets Syst..
[4] Andrei Popescu,et al. A general approach to fuzzy concepts , 2004, Math. Log. Q..
[5] Radim Belohlávek,et al. Concept lattices and order in fuzzy logic , 2004, Ann. Pure Appl. Log..
[6] Dexue Zhang,et al. The concept lattice functors , 2013, Int. J. Approx. Reason..
[7] R. Belohlávek. Fuzzy Relational Systems: Foundations and Principles , 2002 .
[8] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[9] Radim Bělohlávek,et al. Lattices of Fixed Points of Fuzzy Galois Connections , 2001 .
[10] I. Stubbe. CATEGORICAL STRUCTURES ENRICHED IN A QUANTALOID: CATEGORIES, DISTRIBUTORS AND FUNCTORS , 2004, math/0409473.
[11] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[12] Dexue Zhang,et al. Preordered sets valued in a GL-monoid , 2012, Fuzzy Sets Syst..
[13] Brian A. Davey,et al. Introduction to Lattices and Order: Frontmatter , 2002 .
[14] Dexue Zhang,et al. Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory , 2009, Int. J. Approx. Reason..
[15] Ulrich Höhle,et al. Non-classical logics and their applications to fuzzy subsets : a handbook of the mathematical foundations of fuzzy set theory , 1995 .
[16] Bernhard Ganter,et al. Formal Concept Analysis: Mathematical Foundations , 1998 .
[17] S. G. Matthews,et al. Partial Metric Topology , 1994 .
[18] Dexue Zhang,et al. Quantale-valued preorders: Globalization and cocompleteness , 2014, Fuzzy Sets Syst..
[19] U. Höhle. Commutative, residuated 1—monoids , 1995 .