Reliability Analysis by Combining Higher-Order Unscented Transformation and Fourth-Moment Method

AbstractIn this work, the fourth-moment method and the higher-order unscented transformation is combined to calculate the failure probability. The higher-order unscented transformation is used to e...

[1]  Zhenzhou Lu,et al.  Structural Reliability Analysis Using Combined Space Partition Technique and Unscented Transformation , 2016 .

[2]  J. H. Richter Reliability estimation using unscented transformation , 2011, 2011 3rd International Workshop on Dependable Control of Discrete Systems.

[3]  Ming Xin,et al.  High-degree cubature Kalman filter , 2013, Autom..

[4]  M. Tichý First-order third-moment reliability method , 1994 .

[5]  Masanobu Shinozuka,et al.  Monte Carlo solution of structural dynamics , 1972 .

[6]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[7]  Yan-Gang Zhao,et al.  Moment methods for structural reliability , 2001 .

[8]  E. Rosenblueth Point estimates for probability moments. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Xiaoping Du Unified Uncertainty Analysis by the First Order Reliability Method , 2008 .

[10]  Yan-Gang Zhao,et al.  Fourth-Moment Standardization for Structural Reliability Assessment , 2007 .

[11]  Zhenzhou Lu,et al.  A new effective screening design for structural sensitivity analysis of failure probability with the epistemic uncertainty , 2016, Reliab. Eng. Syst. Saf..

[12]  Pan Wang,et al.  A derivative based sensitivity measure of failure probability in the presence of epistemic and aleatory uncertainties , 2013, Comput. Math. Appl..

[13]  Jun He,et al.  A Sparse Grid Stochastic Collocation Method for Structural Reliability Analysis , 2014, 8th International Symposium on Reliability Engineering and Risk Management.

[14]  Jeffrey K. Uhlmann,et al.  A consistent, debiased method for converting between polar and Cartesian coordinate systems , 1997 .

[15]  Zhenzhou Lu,et al.  Reliability sensitivity method by line sampling , 2008 .

[16]  M. Miri,et al.  A new efficient simulation method to approximate the probability of failure and most probable point , 2012 .

[17]  M. D. Stefano,et al.  Efficient algorithm for second-order reliability analysis , 1991 .

[18]  Armen Der Kiureghian,et al.  Strategies for finding the design point in non-linear finite element reliability analysis , 2006 .

[19]  Xiaoping Du,et al.  Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions , 2016 .

[20]  Byung Man Kwak,et al.  Efficient statistical tolerance analysis for general distributions using three-point information , 2002 .

[21]  Yan-Gang Zhao,et al.  A general procedure for first/second-order reliabilitymethod (FORM/SORM) , 1999 .

[22]  C. Koh,et al.  Secant Hyperplane Method for Structural Reliability Analysis , 2016 .

[23]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[24]  Zhenzhou Lu,et al.  Reliability sensitivity by method of moments , 2010 .

[25]  Zhenzhou Lu,et al.  An application of the Kriging method in global sensitivity analysis with parameter uncertainty , 2013 .

[26]  B. Ellingwood,et al.  Directional methods for structural reliability analysis , 2000 .

[27]  Yan-Gang Zhao,et al.  Third-Moment Standardization for Structural Reliability Analysis , 2000 .

[28]  A. Kiureghian,et al.  Multiple design points in first and second-order reliability , 1998 .

[29]  Armen Der Kiureghian,et al.  A gradient-free method for determining the design point in nonlinear stochastic dynamic analysis , 2012 .

[30]  Xiaoping Du,et al.  A Second-Order Reliability Method With First-Order Efficiency , 2010 .

[31]  A. Kiureghian,et al.  STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .

[32]  R. Rackwitz,et al.  Structural reliability under combined random load sequences , 1978 .

[33]  Helmut J. Pradlwarter,et al.  Local Domain Monte Carlo Simulation , 2010 .

[34]  R. Rackwitz,et al.  New light on first- and second-order reliability methods , 1987 .

[35]  S. Winterstein Nonlinear Vibration Models for Extremes and Fatigue , 1988 .

[36]  Robert E. Melchers,et al.  Structural system reliability assessment using directional simulation , 1994 .

[37]  S. Winterstein,et al.  Extremes of Nonlinear Vibration: Comparing Models Based on Moments, L-Moments, and Maximum Entropy , 2013 .

[38]  Ping Yi,et al.  Non-Gradient–Based Algorithm for Structural Reliability Analysis , 2014 .

[39]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[40]  B. Sudret,et al.  Metamodel-based importance sampling for structural reliability analysis , 2011, 1105.0562.

[41]  Zhen Hu,et al.  First Order Reliability Method With Truncated Random Variables , 2012 .

[42]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[43]  Simon J. Julier,et al.  The spherical simplex unscented transformation , 2003, Proceedings of the 2003 American Control Conference, 2003..