Convex interfacial joints with least stress singularities in dissimilar materials

An integrated experimental and numerical investigation is employed to evaluate a new axisymmetric convex joint for the least free-edge stress singularity. Quasi-static tension and dynamic tension experiments of both straight and convex bi-material joints are conducted. Experimental results show that the convex joint yields an increase in final failure strength (up to 22%) and a reduction in material volume (at least 18%), compared to the traditional straight-edged joint. Finite element results indicate that the new axisymmetric convex interfacial joint is effective in removing the stress singularity at the bi-material edge and consequently, a relatively uniform interfacial stress distribution is achieved. The uniform stress distribution leads to more reasonable interfacial strength measurements and higher tensile strengths of dissimilar material joints.

[1]  Arun Shukla,et al.  Investigation of the mechanics of intersonic crack propagation along a bimaterial interface using coherent gradient sensing and photoelasticity , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  J. Gunnars,et al.  Crack Growth Across a Strength Mismatched Bimaterial Interface , 1998 .

[3]  G. Tandon,et al.  Influence of free edge and corner singularities on interfacial normal strength: application in model unidirectional composites , 1999 .

[4]  R. H. Dodds,et al.  Ductile tearing in thin aluminum panels: experiments and analyses using large-displacement, 3-D surface cohesive elements , 2002 .

[5]  V.P.W. Shim,et al.  An analysis of stress uniformity in split Hopkinson bar test specimens , 2005 .

[6]  John Lambros,et al.  Dynamic fiber debonding and frictional push-out in model composite systems: Experimental observations , 2002 .

[7]  Guruswami Ravichandran,et al.  Critical Appraisal of Limiting Strain Rates for Compression Testing of Ceramics in a Split Hopkinson Pressure Bar , 1994 .

[8]  Norman A. Fleck,et al.  Interfacial cracking from the freeedge of a long bi-material strip , 1997 .

[9]  Amos Gilat,et al.  Torsional split Hopkinson bar tests at strain rates above 104s−1 , 2000 .

[10]  F. Erdogan,et al.  Stress singularities in a two-material wedge , 1971 .

[11]  T. Siegmund,et al.  An irreversible cohesive zone model for interface fatigue crack growth simulation , 2003 .

[12]  David B. Bogy,et al.  Two Edge-Bonded Elastic Wedges of Different Materials and Wedge Angles Under Surface Tractions , 1971 .

[13]  S. Timoshenko,et al.  Mechanics of Materials, 3rd Ed. , 1991 .

[14]  Hoon Huh,et al.  A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals , 2002 .

[15]  John W. Gillespie,et al.  Hopkinson bar experimental technique: A critical review , 2004 .

[16]  Viggo Tvergaard,et al.  Predictions of mixed mode interface crack growth using a cohesive zone model for ductile fracture , 2004 .

[17]  D. Munz,et al.  Stresses near the edge of bonded dissimilar materials described by two stress intensity factors , 1993 .

[18]  Ching-Hwei Chue,et al.  Disappearance of free-edge stress singularity in composite laminates , 2002 .

[19]  G. Ravichandran,et al.  Evaluation of Ceramic Specimen Geometries Used in a Split Hopkinson Pressure Bar , 1994 .

[20]  M. Williams,et al.  Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension , 1952 .

[21]  L. R. Xu,et al.  Dissimilar material joints with and without free-edge stress singularities: Part I. A biologically inspired design , 2004 .

[22]  J. Dundurs Discussion: ``Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading'' (Bogy, D. B., 1968, ASME J. Appl. Mech., 35, pp. 460-466) , 1969 .

[23]  J. Lambros,et al.  Dynamic crack kinking from a PMMA/Homalite interface , 2004 .

[24]  L. R. Xu,et al.  Dissimilar material joints with and without free-edge stress singularities: Part II. An integrated numerical analysis , 2004 .

[25]  T. Yokoyama Experimental determination of impact tensile properties of adhesive butt joints with the split Hopkinson bar , 2003 .

[26]  T. R. Guess,et al.  Comparison of butt tensile strength data with interface corner stress intensity factor prediction , 1993 .

[27]  Ares J. Rosakis,et al.  A coherent gradient sensor for crack tip deformation measurements: analysis and experimental results , 1991 .

[28]  Paul F. Joseph,et al.  Standardized complex and logarithmic eigensolutions for n-material wedges and junctions , 1996 .

[29]  K. Liechti,et al.  The intrinsic toughness and adhesion mechanisms of a glass/epoxy interface , 1999 .

[30]  M. Meyers Dynamic Behavior of Materials , 1994 .

[31]  David B. Bogy,et al.  Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading , 1968 .

[32]  M. Cheng,et al.  Tension and compression tests of two polymers under quasi-static and dynamic loading , 2002 .

[33]  K. T. Ramesh,et al.  Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression , 2004 .

[34]  Alfred Rotimi Akisanya,et al.  Initiation of fracture at the interface corner of bi-material joints , 2003 .