Perfusion Imaging

MRI has become a reliable tool in medical imaging for assessing morphological and functional details of the human body in a noninvasive manner. Perfusion is an important parameter to assess status and functionality of tissue and organs. This review summarizes the different approaches to measure perfusion based on MRI. Some basics of the theoretical background are provided as well as measurement techniques with and without contrast media are described. J. Magn. Reson. Imaging 2014;40:269–279. © 2013 Wiley Periodicals, Inc.

[1]  Weiying Dai,et al.  Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling , 2013, Magnetic resonance in medicine.

[2]  Xavier Golay,et al.  Arterial spin labelling: final steps to make it a clinical reality , 2012, Magnetic Resonance Materials in Physics, Biology and Medicine.

[3]  Roger J Ordidge,et al.  In vivo hadamard encoded continuous arterial spin labeling (H‐CASL) , 2010, Magnetic resonance in medicine.

[4]  D. Alsop,et al.  Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields , 2008, Magnetic resonance in medicine.

[5]  R. Kraft,et al.  Arterial Spin-Labeling in Routine Clinical Practice, Part 3: Hyperperfusion Patterns , 2008, American Journal of Neuroradiology.

[6]  R. Kraft,et al.  Arterial Spin-Labeling in Routine Clinical Practice, Part 2: Hypoperfusion Patterns , 2008, American Journal of Neuroradiology.

[7]  R. Kraft,et al.  Arterial Spin-Labeling in Routine Clinical Practice, Part 1: Technique and Artifacts , 2008, American Journal of Neuroradiology.

[8]  R Bowtell,et al.  Modeling and optimization of look‐locker spin labeling for measuring perfusion and transit time changes in activation studies taking into account arterial blood volume , 2008, Magnetic resonance in medicine.

[9]  S. Francis,et al.  Noninvasive measurement of arterial cerebral blood volume using look‐locker EPI and arterial spin labeling , 2007, Magnetic resonance in medicine.

[10]  Matthias Günther,et al.  Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI , 2006, Magnetic resonance in medicine.

[11]  X Golay,et al.  Non-invasive Measurement of Perfusion: a Critical Review of Arterial Spin Labelling Techniques , 2022 .

[12]  Wen-Chau Wu,et al.  Velocity‐selective arterial spin labeling , 2006, Magnetic resonance in medicine.

[13]  Emmanuel L Barbier,et al.  Comparative Overview of Brain Perfusion Imaging Techniques , 2005, Journal of neuroradiology. Journal de neuroradiologie.

[14]  D. Feinberg,et al.  Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements , 2005, Magnetic resonance in medicine.

[15]  Soonmee Cha,et al.  Perfusion MR Imaging of Brain Tumors , 2004, Topics in magnetic resonance imaging : TMRI.

[16]  Robert Trampel,et al.  Efficiency of flow‐driven adiabatic spin inversion under realistic experimental conditions: A computer simulation , 2004, Magnetic resonance in medicine.

[17]  X. Golay,et al.  Perfusion Imaging Using Arterial Spin Labeling , 2004, Topics in magnetic resonance imaging : TMRI.

[18]  Roger J Ordidge,et al.  Velocity‐driven adiabatic fast passage for arterial spin labeling: Results from a computer model , 2003, Magnetic resonance in medicine.

[19]  Michael Bock,et al.  Arterial spin labeling in combination with a look‐locker sampling strategy: Inflow turbo‐sampling EPI‐FAIR (ITS‐FAIR) , 2001, Magnetic resonance in medicine.

[20]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[21]  P. Bandettini,et al.  QUIPSS II with thin‐slice TI1 periodic saturation: A method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling , 1999, Magnetic resonance in medicine.

[22]  M. Bock,et al.  Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: Assessment using T*2 and T1 measurements , 1999, Magnetic resonance in medicine.

[23]  J. Detre,et al.  Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. , 1998, Radiology.

[24]  R. Buxton,et al.  Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) , 1998 .

[25]  J. Detre,et al.  The efficiency of adiabatic inversion for perfusion imaging by arterial spin labeling , 1997, NMR in biomedicine.

[26]  J A Frank,et al.  Effect of magnetization transfer on the measurement of cerebral blood flow using steady‐state arterial spin tagging approaches: A theoretical investigation , 1997, Magnetic resonance in medicine.

[27]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[28]  T Hackländer,et al.  Cerebral blood volume maps with dynamic contrast-enhanced T1-weighted FLASH imaging: normal values and preliminary clinical results. , 1996, Journal of computer assisted tomography.

[29]  T Hackländer,et al.  Measurement of cerebral blood volume via the relaxing effect of low-dose gadopentetate dimeglumine during bolus transit. , 1996, AJNR. American journal of neuroradiology.

[30]  T. L. Davis,et al.  Mr perfusion studies with t1‐weighted echo planar imaging , 1995, Magnetic resonance in medicine.

[31]  Seong-Gi Kim Quantification of relative cerebral blood flow change by flow‐sensitive alternating inversion recovery (FAIR) technique: Application to functional mapping , 1995, Magnetic resonance in medicine.

[32]  Donald S. Williams,et al.  NMR Measurement of Perfusion Using Arterial Spin Labeling Without Saturation of Macromolecular Spins , 1995, Magnetic resonance in medicine.

[33]  Donald S. Williams,et al.  Multi‐Slice MRI of Rat Brain Perfusion During Amphetamine Stimulation Using Arterial Spin Labeling , 1995, Magnetic resonance in medicine.

[34]  A. Nobre,et al.  Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. , 1994, Radiology.

[35]  E F Halpern,et al.  Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. , 1994, Radiology.

[36]  R R Edelman,et al.  Signal targeting with alternating radiofrequency (STAR) sequences: Application to MR angiography , 1994, Magnetic resonance in medicine.

[37]  Donald S. Williams,et al.  Magnetic resonance imaging of perfusion using spin inversion of arterial water , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  P. Tofts,et al.  Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts , 1991, Magnetic resonance in medicine.

[39]  D G Nishimura,et al.  Multiple‐readout selective inversion recovery angiography , 1991, Magnetic resonance in medicine.

[40]  O Henriksen,et al.  Quantitation of blood‐brain barrier defect by magnetic resonance imaging and gadolinium‐DTPA in patients with multiple sclerosis and brain tumors , 1990, Magnetic resonance in medicine.

[41]  R R Edelman,et al.  Cerebral blood flow: assessment with dynamic contrast-enhanced T2*-weighted MR imaging at 1.5 T. , 1990, Radiology.

[42]  R. Balaban,et al.  Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo , 1989, Magnetic resonance in medicine.

[43]  J. Pauly,et al.  MR angiography by selective inversion recovery , 1987, Magnetic resonance in medicine.

[44]  M. Gado,et al.  Projection angiograms of blood labeled by adiabatic fast passage , 1986, Magnetic resonance in medicine.

[45]  S. Kety,et al.  THE NITROUS OXIDE METHOD FOR THE QUANTITATIVE DETERMINATION OF CEREBRAL BLOOD FLOW IN MAN: THEORY, PROCEDURE AND NORMAL VALUES. , 1948, The Journal of clinical investigation.

[46]  E. Wong,et al.  Velocity Selective Inversion Pulse Trains for Velocity Selective Arterial Spin Labeling , 2008 .

[47]  C. Grandin Assessment of brain perfusion with MRI: methodology and application to acute stroke , 2003, Neuroradiology.

[48]  P. Tofts Modeling tracer kinetics in dynamic Gd‐DTPA MR imaging , 1997, Journal of magnetic resonance imaging : JMRI.

[49]  T. Miyati,et al.  Dual dynamic contrast‐enhanced MR imaging , 1997, Journal of magnetic resonance imaging : JMRI.

[50]  C K Kuhl,et al.  Breast neoplasms: T2* susceptibility-contrast, first-pass perfusion MR imaging. , 1997, Radiology.

[51]  W T Yuh,et al.  Application of contrast agents in the evaluation of stroke: Conventional MR and echo‐planar MR imaging , 1997, Journal of magnetic resonance imaging : JMRI.

[52]  L R Schad,et al.  Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. , 1991, Journal of computer assisted tomography.

[53]  I. Hutton,et al.  Perfusion imaging. , 1989, British medical bulletin.