Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry

We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a tele-com wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in F. Kaiser et al. (2013 Laser Phys. Lett. 10, 045202).

[1]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Masahide Sasaki,et al.  High-speed wavelength-division multiplexing quantum key distribution system. , 2012, Optics letters.

[4]  P. Bassi,et al.  High performance mode adapters based on segmented SPE:LiNbO3 waveguides. , 2009, Optics express.

[5]  Thomas Coudreau,et al.  Entanglement-Enabled Delayed-Choice Experiment , 2012, Science.

[6]  Takayoshi Kobayashi,et al.  Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion , 2004 .

[7]  N. Gisin,et al.  Detector imperfections in photon-pair source characterization , 2011, 1109.0194.

[8]  O. Alibart,et al.  Two-photon interference between disparate sources for quantum networking , 2013, Scientific Reports.

[9]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[10]  Jian-Wei Pan,et al.  Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. , 2008, Physical review letters.

[11]  Nicolas Gisin,et al.  Quantum teleportation over the Swisscom telecommunication network , 2007 .

[12]  Félix Bussières,et al.  Quantum storage of photonic entanglement in a crystal , 2010, Nature.

[13]  Jeffrey H Shapiro,et al.  Time-bin-modulated biphotons from cavity-enhanced down-conversion. , 2006, Physical review letters.

[14]  V. Scarani,et al.  Two independent photon pairs versus four-photon entangled states in parametric down conversion , 2003, quant-ph/0310167.

[15]  Félix Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2011, SUM 2011.

[16]  M. Shahriar,et al.  Long distance, unconditional teleportation of atomic states via complete Bell state measurements. , 2000, Physical review letters.

[17]  J. Rarity,et al.  Photon statistics of pulsed parametric light , 1998 .

[18]  Nicolas Gisin,et al.  Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods , 2004 .

[19]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[20]  E. Diamanti,et al.  Analysis of elliptically polarized maximally entangled states for bell inequality tests , 2012, 1207.3609.

[21]  N. Gisin,et al.  PPLN waveguide for quantum communication , 2001, quant-ph/0107125.

[22]  D. Ostrowsky,et al.  On the genesis and evolution of Integrated Quantum Optics , 2011, 1108.3162.

[23]  V. Vuletić,et al.  Heralded single-magnon quantum memory for photon polarization States. , 2008, Physical review letters.

[24]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[25]  Thomas Lorünser,et al.  High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. , 2007, Optics express.

[26]  W. Marsden I and J , 2012 .

[27]  Pascal Baldi,et al.  Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions , 2000 .

[28]  A. I. Lvovsky,et al.  Observation of micro–macro entanglement of light , 2013 .

[29]  A. Beveratos,et al.  Cross time-bin photonic entanglement for quantum key distribution , 2013 .

[30]  Compact sources of polarization-entangled photons. , 2008, Optics express.

[31]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[32]  L. A. Ngah,et al.  High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels , 2012, 1206.3809.

[33]  Douglas B. Leviton,et al.  Temperature-dependent absolute refractive index measurements of synthetic fused silica , 2006, SPIE Astronomical Telescopes + Instrumentation.

[34]  John Rarity Photonic quantum information , 2005 .

[35]  N. Gisin,et al.  Displacement of entanglement back and forth between the micro and macro domains , 2012, Nature Physics.

[36]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[37]  Jeremy L O'Brien,et al.  Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. , 2007, Physical review letters.

[38]  Christoph Simon,et al.  Coherent frequency-down-conversion interface for quantum repeaters. , 2010, Optics express.

[39]  O. Alibart,et al.  A versatile source of polarization entangled photons for quantum network applications , 2011, 1111.5683.

[40]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[41]  O. Alibart,et al.  High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources , 2009, 0912.5312.

[42]  M. Hennrich,et al.  Heralded single-photon absorption by a single atom , 2010, 1004.4158.

[43]  An entangled photon source for resonant single-photon-single-atom interaction , 2009 .

[44]  N. Gisin,et al.  Violation of Bell Inequalities by Photons More Than 10 km Apart , 1998, quant-ph/9806043.

[45]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[46]  O. Alibart,et al.  A photonic quantum information interface , 2005, Nature.

[47]  Rupert Ursin,et al.  Experimental delayed-choice entanglement swapping , 2012 .

[48]  N. Gisin,et al.  Long-distance Bell-type tests using energy-time entangled photons , 1998, quant-ph/9809025.

[49]  Hui Yan,et al.  Generation of narrow-band hyperentangled nondegenerate paired photons. , 2011, Physical review letters.

[50]  N. Gisin,et al.  Experimental methods for detecting entanglement. , 2005, Physical review letters.

[51]  Nicolas Gisin,et al.  High coherence photon pair source for quantum communication , 2007, 0710.1143.

[52]  J. P. von der Weid,et al.  Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation , 2009, 0905.0394.

[53]  H Zbinden,et al.  Narrowband photon pair source for quantum networks. , 2013, Optics express.

[54]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[55]  Wolfgang Tittel,et al.  Photonic entanglement for fundamental tests and quantum communication , 2001, Quantum Inf. Comput..

[56]  V. Lorenz,et al.  Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber , 2013, 1310.3922.

[57]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[58]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[59]  I. Walmsley,et al.  Towards high-speed optical quantum memories , 2009, 0912.2970.

[60]  A. Kuzmich,et al.  Entanglement of light-shift compensated atomic spin waves with telecom light. , 2010, Physical review letters.

[61]  Sandu Popescu,et al.  A Quantum Delayed-Choice Experiment , 2012, Science.

[62]  Christine Silberhorn,et al.  Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs. , 2013, Optics express.

[63]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .