Integrability and fusion algebra for quantum mappings

We apply the fusion procedure to a quantum Yang-Baxter algebra associated with time-discrete integrable systems, notably integrable quantum mappings. We present a general construction of higher-order quantum invariants for these systems. As an important class of examples, we present the Yang-Baxter structure of the Gel'fand-Dikii mapping hierarchy that we have introduced in previous papers, together with the corresponding explicit commuting family of quantum invariants.

[1]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[2]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[3]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[4]  Papageorgiou,et al.  Integrable quantum mappings. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  G. R. W. Quispel,et al.  The lattice Gel'fand-Dikii hierarchy , 1992 .

[6]  F. Smirnov Form Factors in Completely Integrable Models of Quantum Field Theory , 1992 .

[7]  A. Volkov Quantum volterra model , 1992 .

[8]  N. Reshetikhin,et al.  Quantum affine algebras and holonomic difference equations , 1992 .

[9]  F. Smirnov Dynamical Symmetries of Massive Integrable Models 1:. Form Factor Bootstrap Equations as a Special Case of Deformed Knizhnik-Zamolodchikov Equations , 1992 .

[10]  H. Capel,et al.  Integrable quantum mappings and non-ultralocal Yang-Baxter structures , 1992 .

[11]  Vladimir Kanovei,et al.  Undecidable hypotheses in Edward Nelson's internal set theory , 1991 .

[12]  A. Alekseev,et al.  (T*G)t: A toy model for conformal field theory , 1991 .

[13]  H. Capel,et al.  Complete integrability of Lagrangian mappings and lattices of KdV type , 1991 .

[14]  P. Kulish,et al.  The general Uq(sl(2)) invariant XXZ integrable quantum spin chain , 1991 .

[15]  I. Kondor,et al.  Short-range corrections to the order parameter of the Ising spin glass above the upper critical dimension , 1991 .

[16]  O. Babelon Universal exchange algebra for Bloch waves and Liouville theory , 1991 .

[17]  L. Bonora,et al.  Quantum Toda theory , 1991 .

[18]  H. Capel,et al.  Integrable mappings and nonlinear integrable lattice equations , 1990 .

[19]  O. Babelon Exchange formula and lattice deformation of the Virasoro algebra , 1990 .

[20]  N. Reshetikhin,et al.  Central extensions of quantum current groups , 1990 .

[21]  O. Babelon Extended conformal algebra and the Yang-Baxter equation , 1988 .

[22]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[23]  V. Drinfeld A New realization of Yangians and quantized affine algebras , 1987 .

[24]  M. Jimbo QuantumR matrix for the generalized Toda system , 1986 .

[25]  N. Reshetikhin,et al.  The Yangians, Bethe Ansatz and combinatorics , 1986 .

[26]  Michio Jimbo,et al.  A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation , 1986 .

[27]  Michio Jimbo,et al.  Aq-difference analogue of U(g) and the Yang-Baxter equation , 1985 .

[28]  I. Cherednik Factorizing particles on a half-line and root systems , 1984 .

[29]  École d'été de physique théorique,et al.  Développements récents en théorie des champs et mécanique statistique = Recent advances in field theory and statistical mechanics , 1984 .

[30]  N. Reshetikhin,et al.  Quantum linear problem for the sine-Gordon equation and higher representations , 1983 .

[31]  L. Faddeev,et al.  Local Hamiltonians for integrable quantum models on a lattice , 1983 .

[32]  N. Reshetikhin,et al.  Yang-Baxter equation and representation theory: I , 1981 .

[33]  B. Theorem Topics in Representation Theory: The , 2022 .