The 2-degree Field Lensing Survey: design and clustering measurements

We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70?079 redshifts in the range z < 0.9 over an area of 731 deg2, and is designed to extend the data sets available for testing gravitational physics and promote the development of relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40?531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy–galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28?269 redshifts form a magnitude-limited (r < 19.5) nearly complete subsample, allowing direct source classification and photometric-redshift calibration. In this paper, we describe the motivation, target selection, spectroscopic observations, and clustering analysis of 2dFLenS. We use power spectrum multipole measurements to fit the redshift-space distortion parameter of the LRG sample in two redshift ranges 0.15 < z < 0.43 and 0.43 < z < 0.7 as ? = 0.49 ± 0.15 and ? = 0.26 ± 0.09, respectively. These values are consistent with those obtained from LRGs in the Baryon Oscillation Spectroscopic Survey. 2dFLenS data products will be released via our website http://2dflens.swin.edu.au.

[1]  Karl Glazebrook,et al.  Marz: Manual and automatic redshifting software , 2016, Astron. Comput..

[2]  C. Heymans,et al.  RCSLenS: a new estimator for large-scale galaxy-matter correlations , 2015, 1512.03625.

[3]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[4]  W. M. Wood-Vasey,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.

[5]  C. Heymans,et al.  RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure , 2015, 1507.03086.

[6]  F. Beutler,et al.  The BOSS–WiggleZ overlap region – II. Dependence of cosmic growth on galaxy type , 2015, 1506.03901.

[7]  Edwin Valentijn,et al.  Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.

[8]  Massimo Brescia,et al.  The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.

[9]  R. Scoccimarro,et al.  Fast estimators for redshift-space clustering , 2015, 1506.02729.

[10]  Davide Bianchi,et al.  Measuring line-of-sight-dependent Fourier-space clustering using FFTs , 2015, 1505.05341.

[11]  T. Licquia,et al.  LUMINOUS RED GALAXIES: SELECTION AND CLASSIFICATION BY COMBINING OPTICAL AND INFRARED PHOTOMETRY , 2015, 1504.06328.

[12]  R. Nichol,et al.  Cosmic shear measurements with Dark Energy Survey science verification data , 2015, 1507.05598.

[13]  R. Nichol,et al.  OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results , 2015, 1504.03039.

[14]  University of Cambridge,et al.  The VLT Survey Telescope ATLAS , 2015, 1502.05432.

[15]  M. Geller,et al.  QUIESCENT COMPACT GALAXIES AT INTERMEDIATE REDSHIFT IN THE COSMOS FIELD. THE NUMBER DENSITY , 2015, 1501.04976.

[16]  Adam D. Myers,et al.  Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.

[17]  Ludovic van Waerbeke,et al.  Simulations of weak gravitational lensing – II. Including finite support effects in cosmic shear covariance matrices , 2014, 1406.0543.

[18]  W. M. Wood-Vasey,et al.  Spectroscopic Needs for Imaging Dark Energy Experiments , 2013, 1309.5384.

[19]  Sarah Bridle,et al.  Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity , 2013, 1307.8062.

[20]  E. Gaztañaga,et al.  Combining spectroscopic and photometric surveys: Same or different sky? , 2014, 1412.8429.

[21]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[22]  J. Brownstein,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS , 2014, 1407.1856.

[23]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): AUTOZ spectral redshift measurements, confidence and errors. , 2014, 1404.2626.

[24]  Adam D. Myers,et al.  Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars , 2014, 1404.1801.

[25]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[26]  J. Comparat,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling of the luminosity and colour dependence in the Data Release 10 , 2014, 1401.3009.

[27]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.

[28]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples , 2013, 1312.4854.

[29]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles , 2013, 1312.4611.

[30]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering , 2013, 1312.4899.

[31]  A. Slosar,et al.  DESI and other Dark Energy experiments in the era of neutrino mass measurements , 2013, 1308.4164.

[32]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[33]  M. Schirmer,et al.  THELI: CONVENIENT REDUCTION OF OPTICAL, NEAR-INFRARED, AND MID-INFRARED IMAGING DATA , 2013, 1308.4989.

[34]  O. Dor'e,et al.  USING CROSS CORRELATIONS TO CALIBRATE LENSING SOURCE REDSHIFT DISTRIBUTIONS: IMPROVING COSMOLOGICAL CONSTRAINTS FROM UPCOMING WEAK LENSING SURVEYS , 2013, 1306.0534.

[35]  G. Zamorani,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - Galaxy clustering and redshift-space distortions at z ≃ 0.8 in the first data release , 2013, 1303.2622.

[36]  M. White,et al.  On using angular cross-correlations to determine source redshift distributions , 2013, 1302.0857.

[37]  H. Hoekstra,et al.  CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions , 2012, 1212.3339.

[38]  Hugh Merz,et al.  High Performance P3M N-body code: CUBEP3M , 2012, 1208.5098.

[39]  A. Slosar,et al.  Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.

[40]  M. D’Onofrio,et al.  SUPERDENSE GALAXIES AND THE MASS–SIZE RELATION AT LOW REDSHIFT , 2012, 1211.1005.

[41]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[42]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[43]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[44]  Will Saunders,et al.  The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.

[45]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[46]  S. Gwyn,et al.  THE CANADA–FRANCE–HAWAII TELESCOPE LEGACY SURVEY: STACKED IMAGES AND CATALOGS , 2012 .

[47]  G. Bernstein,et al.  Combining weak-lensing tomography and spectroscopic redshift surveys , 2011, 1112.4478.

[48]  D. Schlegel,et al.  Seeing in the dark – II. Cosmic shear in the Sloan Digital Sky Survey , 2011, 1112.3143.

[49]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[50]  SLAC,et al.  Sample variance in photometric redshift calibration: cosmological biases and survey requirements , 2011, 1109.5691.

[51]  F. Castander,et al.  Cross-correlation of spectroscopic and photometric galaxy surveys: cosmology from lensing and redshift distortions , 2011, 1109.4852.

[52]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[53]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[54]  Christopher J. Miller,et al.  The XMM Cluster Survey:Optical analysis methodology and the first data release , 2011, 1106.3056.

[55]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[56]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[57]  S. Gwyn,et al.  The CFHT Legacy Survey: stacked images and catalogs , 2011, 1101.1084.

[58]  R. Nichol,et al.  Complementarity of weak lensing and peculiar velocity measurements in testing general relativity , 2010, 1011.2106.

[59]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[60]  M. Sullivan,et al.  SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY , 2011, 1104.1443.

[61]  B. Hsieh,et al.  THE RED-SEQUENCE CLUSTER SURVEY-2 (RCS-2): SURVEY DETAILS AND PHOTOMETRIC CATALOG CONSTRUCTION , 2010, 1012.3470.

[62]  Rachel Mandelbaum,et al.  Confirmation of general relativity on large scales from weak lensing and galaxy velocities , 2010, Nature.

[63]  J. Brinchmann,et al.  ON THE DEARTH OF COMPACT, MASSIVE, RED SEQUENCE GALAXIES IN THE LOCAL UNIVERSE , 2009, 0907.4766.

[64]  G. Fasano,et al.  SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS , 2009, 0907.2392.

[65]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[66]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[67]  Patrick McDonald,et al.  How to evade the sample variance limit on measurements of redshift-space distortions , 2009 .

[68]  T. Beers,et al.  TRACING SAGITTARIUS STRUCTURE WITH SDSS AND SEGUE IMAGING AND SPECTROSCOPY , 2009, 0905.4502.

[69]  J. Khoury,et al.  Galileon Cosmology , 2009, 0905.1325.

[70]  P. Hudelot,et al.  CARS: the CFHTLS-Archive-Research Survey. I. Five-band multi-colour data from 37 sq. deg. CFHTLS-wid , 2008, 0811.2239.

[71]  Cea,et al.  RED NUGGETS AT z ∼ 1.5: COMPACT PASSIVE GALAXIES AND THE FORMATION OF THE KORMENDY RELATION , 2008, 0807.1744.

[72]  Cascading gravity: extending the Dvali-Gabadadze-Porrati model to higher dimension. , 2008, Physical review letters.

[73]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[74]  R. J. Brunner,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) luminous red galaxy survey , 2006, astro-ph/0607631.

[75]  S. Croom,et al.  Multi-object spectroscopy field configuration by simulated annealing , 2006, astro-ph/0607125.

[76]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[77]  B. Bassett,et al.  A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey , 2005, astro-ph/0505115.

[78]  D. Huterer,et al.  Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005, astro-ph/0506614.

[79]  C. Benoist,et al.  GaBoDS: The Garching-Bonn Deep Survey; IV. Methods for the Image reduction of multi-chip Cameras , 2005, astro-ph/0501144.

[80]  Will Saunders,et al.  AAOmega: a scientific and optical overview , 2004, SPIE Astronomical Telescopes + Instrumentation.

[81]  R. Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004, astro-ph/0407214.

[82]  C. Blake,et al.  Quantifying angular clustering in wide-area radio surveys , 2002, astro-ph/0208350.

[83]  I. Parry,et al.  The Anglo-Australian Observatory 2dF facility , 2002, astro-ph/0202175.

[84]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[85]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[86]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[87]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[88]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[89]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[90]  E. L. Wright,et al.  The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.

[91]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[92]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[93]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[94]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[95]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .