Single‐stage Treatment in Selective Hydrogenation of Acetylene over CDS Type of Pd‐Ag/Al2O3 Catalyst

The (computer designed shape) CDS type of Pd-Ag/Al2O3 catalyst in single-stage reactor provides superior catalytic activity and selectivity of ethylene in comparison with those of existed two-stage reactors packed with G-58B catalyst under industrial operating conditions. In this research, the contents of palladium and silver of catalysts were analyzed by inductive coupling plasma (ICP). The X-ray photoelectron spectroscopy (XPS) showed that Pd-Ag alloy has been formed. Higher yield of ethylene may be interpreted by both geometric and electronic effect induced from silver metal. By means of Pyrolysis/GC/MS analysis of used catalysts, the components of carbonaceous deposits were found to be n-alkenes, including n-C8 ∼ n-C16 or n-C18, which may result from oligomerization of acetylene. Le type CDS (forme concue par ordinateur) du catalyseur Pd-Ag/Al2O3 dans un reacteur monoetage donne une activite et une selectivite catalytiques de l'ethylene superieures comparativement aux reacteurs bietages garnis avec le catalyseur G-58B dans des conditions operatoires industrielles. Dans cette recherche, les teneurs des catalyseurs en palladium et en argent ont ete analysees par plasma a couplace inductif (ICP). La spectroscopie des photoelectrons RX (XPS) montre que l'alliage Pd-Ag s'est forme. Un plus haut rendement d'ethylene peut etre interprete par l'effet geometrique et l'effet electronique provoques par le metal argente. Par l'analyse de pyrolyse/GC/MS des catalyseurs utilises, on a trouve que les composantes des depots carbonaces etaient les n-alcenes, incluant n-C8 ∼ n-C16 ou n-C18, ce qui peut resulter de l'oligomerisation de l'acetylene.

[1]  A. Datye,et al.  The Influence of Catalyst Restructuring on the Selective Hydrogenation of Acetylene to Ethylene , 2001 .

[2]  A. Sárkány,et al.  Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity , 2001 .

[3]  P. Praserthdam,et al.  Activation of acetylene selective hydrogenation catalysts using oxygen containing compounds , 2000 .

[4]  Andrzej Cybulski,et al.  The kinetic model of hydrogenation of acetylene–ethylene mixtures over palladium surface covered by carbonaceous deposits , 2000 .

[5]  Qiming Zhu,et al.  Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene , 2000 .

[6]  A. Borodziński Hydrogenation of acetylene–ethylene mixtures on a commercial palladium catalyst , 1999 .

[7]  C. Lambert,et al.  Activity and selectivity of a $${\text{Pd/}}\gamma {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}}$$ catalytic membrane in the partial hydrogenation reactions of acetylene and 1,3-butadiene , 1999 .

[8]  K. Chang,et al.  Effect of Ag‐promotion on Pd catalysts by XANES , 1998 .

[9]  Francesco Frusteri,et al.  Selective hydrogenation of acetylene in ethylene feedstocks on Pd catalysts , 1996 .

[10]  M. Larsson,et al.  Incorporation of Deuterium in Coke Formed on an Acetylene Hydrogenation Catalyst , 1996 .

[11]  A. Errazu,et al.  Kinetics of Front-End Acetylene Hydrogenation in Ethylene Production , 1996 .

[12]  C. Godínez,et al.  Experimental study of the tail end selective hydrogenation of steam cracking C2‐C3 mixture , 1996 .

[13]  C. Godínez,et al.  Experimental study of the front-end selective hydrogenation of steam-cracking C2-C3 mixture , 1995 .

[14]  C. Gigola,et al.  Low-Loaded Palladium on α-Alumina Catalysts: Characterization by Chemisorption, Electron-Microscopy, and Photoelectron Spectroscopy , 1995 .

[15]  N. Itoh,et al.  Capability of permeate hydrogen through palladium-based membranes for acetylene hydrogenation , 1993 .

[16]  Klaas R. Westerterp,et al.  A kinetic study of the hydrogenation of ethyne and ethene on a commercial Pd/Al2O3 catalyst , 1993 .

[17]  K. Westerterp,et al.  Mechanism and kinetics of the selective hydrogenation of ethyne and ethene , 1993 .

[18]  B. Albinsson,et al.  Cross-desorption of differently adsorbed carbon monoxide on Pd/α-Al2O3 by means of acetylene , 1991 .

[19]  Yeung-ho Park,et al.  Deuterium tracer study on the effect of carbon monoxide on the selective hydrogenation of acetylene over palladium/alumina , 1991 .

[20]  L. Cider,et al.  Hydrogenation of acetylene at transient conditions in the presence of olefins and carbon monoxide over palladium/alumina , 1991 .

[21]  C. Gigola,et al.  Activity and selectivity of Pd/α-Al2O3 for ethyne hydrogenation in a large excess of ethene and hydrogen , 1990 .

[22]  L. Z. Gva,et al.  Kinetics of acetylene hydrogenation on palladium deposited on alumina , 1988 .

[23]  C. H. Patterson,et al.  Molecular pathways in the cyclotrimerization of ethyne on palladium: role of the C4 intermediate , 1988 .

[24]  C. Gigola,et al.  Particle size effect in the hydrogenation of acetylene under industrial conditions , 1986 .

[25]  L. Guczi,et al.  Structure sensitivity of acetylene-ethylene hydrogenation over Pd catalysts , 1986 .

[26]  A. Jablonski,et al.  Study on lead additives in modified palladium catalysts , 1984 .

[27]  Alvin H. Weiss,et al.  Acetylene hydrogenation selectivity control on PdCu/Al2O3 catalysts , 1984 .

[28]  L. Guczi,et al.  On the aging phenomenon in palladium catalysed acetylene hydrogenation , 1984 .

[29]  L. Guczi,et al.  The effect of catalyst treatment on the selective hydrogenation of acetylene over palladium/alumina , 1984 .

[30]  L. Guczi,et al.  Reactions of acetylene during hydrogenation on Pd black catalyst , 1981 .

[31]  L. Guczi,et al.  Reaction routes for hydrogenation of acetylene-ethylene mixtures using a double labelling method , 1981 .

[32]  H. Wiedemann Guido Fanconi (1892–1979) in memoriam , 1979, European Journal of Pediatrics.

[33]  D. Whan,et al.  Hydrogenation of acetylene in excess ethylene on an alumina-supported palladium catalyst at atmospheric pressure in a spinning basket reactor , 1978 .

[34]  V. Ponec,et al.  Reactions of hydrocarbons on palladium-gold alloys , 1974 .

[35]  I. Schuller,et al.  Changes in crystallographic orientation of thin foils of palladium and palladium alloys after the absorption of hydrogen , 1994 .

[36]  J. Schmitt,et al.  Mechanisms of reforming reactions on Pd/Al2O3 catalysts , 1993 .

[37]  N. Schöön,et al.  Kinetics of cross-desorption of carbon monoxide by the influence of ethyne over palladium/alumina , 1991 .

[38]  N. Schöön,et al.  Competition between ethyne, ethene and carbon monoxide for the active sites during hydrogenation at transient conditions over supported metal catalysts , 1991 .

[39]  M. Derrien Chapter 18 Selective Hydrogenation Applied to the Refining of Petrochemical Raw Materials Produced by Steam Cracking , 1986 .

[40]  L. Dalloro,et al.  Performance and aging of catalysts for the selective hydrogenation of acetylene: a micropilot-plant study , 1982 .

[41]  Geoffrey I. Webb,et al.  Hydrogenation of acetylene over supported metal catalysts. Part 3.—[14C]tracer studies of the effects of added ethylene and carbon monoxide on the reaction catalysed by silica-supported palladium, rhodium and iridium , 1979 .

[42]  G. Webb,et al.  Hydrogenation of acetylene over supported metal catalysts. Part 1.—Adsorption of [14C]acetylene and [14C]ethylene on silica supported rhodium, iridium and palladium and alumina supported palladium , 1978 .

[43]  G. Webb,et al.  Hydrogenation of acetylene over supported metal catalysts. Part 2.—[14C]tracer study of deactivation phenomena , 1978 .

[44]  M. Scurrell,et al.  Hydrogenation of acetylene in excess ethylene on an alumina supported palladium catalyst in a static system , 1977 .