Generating stationary entangled states in superconducting qubits

When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F{sub max} between the stationary entangled state, {rho}{sub {infinity}}, and the maximally entangled state, {rho}{sub m}, can be about 2/3{approx_equal}max(tr({rho}{sub {infinity}}{rho}{sub m}))=F{sub max}, corresponding to a maximum stationary concurrence, C{sub max}, of about 1/3{approx_equal}C({rho}{sub {infinity}})=C{sub max}. This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.

[1]  Jeff F. Young,et al.  Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. , 2008, Physical review letters.

[2]  E Il'ichev,et al.  Evidence for entangled states of two coupled flux qubits. , 2004, Physical review letters.

[3]  F. Nori,et al.  PHONON SQUEEZED STATES GENERATED BY SECOND-ORDER RAMAN SCATTERING , 1997, cond-mat/9712078.

[4]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[5]  M. Wallquist,et al.  Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity , 2006, cond-mat/0608209.

[6]  F. Nori,et al.  Generalized switchable coupling for superconducting qubits using double resonance , 2006, cond-mat/0605685.

[7]  G. S. Paraoanu,et al.  Microwave-induced coupling of superconducting qubits , 2006, 0801.4541.

[8]  T. D. Clark,et al.  Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference device ring , 2003, quant-ph/0307175.

[9]  A. Cleland,et al.  Superconducting Qubits Coupled to Nanoelectromechanical Resonators: An Architecture for Solid-State Quantum Information Processing , 2004, quant-ph/0409179.

[10]  John Clarke,et al.  Solid-State Qubits with Current-Controlled Coupling , 2006, Science.

[11]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[12]  Phonon squeezed states: quantum noise reduction in solids , 1998, cond-mat/0112011.

[13]  F. Nori,et al.  Quantum information processing with superconducting qubits in a microwave field , 2003, cond-mat/0306207.

[14]  Wei Cui,et al.  Optimal decoherence control in non-Markovian open dissipative quantum systems , 2008, 0910.5208.

[15]  Daniel Braun,et al.  Creation of entanglement by interaction with a common heat bath. , 2002, Physical review letters.

[16]  C. H. Keitel,et al.  Robust coherent preparation of entangled states of two coupled flux qubits via dynamic control of the transition frequencies , 2008, 0810.2453.

[17]  Franco Nori,et al.  Scalable quantum computing with Josephson charge qubits. , 2002, Physical review letters.

[18]  C. P. Sun,et al.  Scalable superconducting qubit circuits using dressed states , 2006, cond-mat/0606178.

[19]  F. Nori,et al.  Generation of nonclassical photon states using a superconducting qubit in a microcavity , 2004, quant-ph/0402189.

[20]  Entanglement generation and protection by detuning modulation , 2006, quant-ph/0611192.

[21]  C. J. Lobb,et al.  Decoherence in a Josephson junction qubit , 2003 .

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  Hu,et al.  Squeezed phonon states: Modulating quantum fluctuations of atomic displacements. , 1996, Physical review letters.

[24]  Jing Zhang,et al.  Maximal suppression of decoherence in Markovian quantum systems , 2005 .

[25]  Franco Nori,et al.  Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits , 2003, cond-mat/0306363.

[26]  D. DiVincenzo,et al.  Dephasing of a superconducting qubit induced by photon noise. , 2005, Physical review letters.

[27]  D A Lidar,et al.  Creating decoherence-free subspaces using strong and fast pulses. , 2002, Physical review letters.

[28]  Protocol for Universal Gates in Optimally Biased Superconducting Qubits , 2004, quant-ph/0412009.

[29]  C. Harmans,et al.  Spectroscopy on two coupled superconducting flux qubits. , 2003, Physical review letters.

[30]  Controllable Coupling between Flux Qubit and Nanomechanical Resonator , 2006, cond-mat/0607180.

[31]  Franco Nori,et al.  Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. , 2005, Physical review letters.

[32]  Yu. A. Pashkin,et al.  Quantum oscillations in two coupled charge qubits , 2002, Nature.

[33]  Physical Review , 1965, Nature.

[34]  Zairong Xi,et al.  Combating dephasing decoherence by periodically performing tracking control and projective measurement , 2007 .

[35]  Franco Nori,et al.  Interqubit coupling mediated by a high-excitation-energy quantum object , 2007, 0709.0237.

[36]  Persistent single-photon production by tunable on-chip micromaser with a superconducting quantum circuit , 2005, quant-ph/0512145.

[37]  Francesco Petruccione,et al.  Dissipation-induced stationary entanglement in dipole-dipole interacting atomic samples , 2004 .

[38]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[39]  J. Eberly,et al.  Quantum open system theory: bipartite aspects. , 2006, Physical review letters.

[40]  Antonino Messina,et al.  Maximally entangled states of two flux qubits in a microwave cavity , 2005 .

[41]  Matthias Steffen,et al.  Simultaneous State Measurement of Coupled Josephson Phase Qubits , 2005, Science.

[42]  P. Joyez,et al.  Decoherence in a superconducting quantum bit circuit , 2005 .

[43]  Xuedong Hu,et al.  Efficient purification protocols using iSWAP gates in solid-state qubits , 2008, 0807.4788.

[44]  Hu,et al.  Quantum phonon optics: Coherent and squeezed atomic displacements. , 1996, Physical review. B, Condensed matter.

[45]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[46]  Switchable coupling between charge and flux qubits , 2007, cond-mat/0703012.

[47]  A. Cleland,et al.  Superconducting phase qubit coupled to a nanomechanical resonator: Beyond the rotating-wave approximation , 2004, quant-ph/0407106.

[48]  R. M. Serra,et al.  Engineering squeezed states in high-Q cavities , 2004 .

[49]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[50]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[51]  F. Nori,et al.  Spectroscopy of superconducting charge qubits coupled by a Josephson inductance , 2008, 0802.0353.

[52]  Jian Li,et al.  Entanglement of superconducting qubits via microwave fields: Classical and quantum regimes , 2008, 0803.0397.

[53]  Roberto Ramos,et al.  Spectroscopy of three-particle entanglement in a macroscopic superconducting circuit. , 2005, Physical review letters.

[54]  Yuriy Makhlin,et al.  Josephson-junction qubits with controlled couplings , 1999, Nature.

[55]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[56]  T. Duty,et al.  Coherence times of dressed states of a superconducting qubit under extreme driving. , 2007, Physical review letters.

[57]  G. Wendin,et al.  Superconducting Quantum Circuits, Qubits and Computing , 2005 .

[58]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[59]  F. Wellstood,et al.  Spectroscopic resonance broadening in a josephson junction qubit due to current noise , 2005 .

[60]  H. Meyer,et al.  Controllable coupling of superconducting flux qubits. , 2006, Physical review letters.

[61]  Franco Nori,et al.  Quantum computation with Josephson qubits using a current-biased information bus , 2005 .

[62]  F. Nori,et al.  Superconducting qubits can be coupled and addressed as trapped ions , 2005, cond-mat/0509236.

[63]  Franco Nori,et al.  Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits. , 2006, Physical review letters.

[64]  Jing Zhang,et al.  Asymptotically noise decoupling for Markovian open quantum systems , 2007 .

[65]  C. H. Webster,et al.  Circuit QED with a flux qubit strongly coupled to a coplanar transmission line resonator , 2007, 0704.0727.

[66]  Entangled Solid-State Circuits , 2006, Science.

[67]  E. Solano,et al.  Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED , 2008, 0805.3294.

[68]  T Yamamoto,et al.  Quantum noise in the josephson charge qubit. , 2004, Physical review letters.

[69]  Quantum memory for superconducting qubits , 2004, quant-ph/0410029.

[70]  Nicolas Gisin,et al.  Open system dynamics with non-markovian quantum trajectories , 1999 .

[71]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[72]  C. Villas-Boas,et al.  Squeezing arbitrary cavity-field states through their interaction with a single driven atom , 2003, quant-ph/0303119.

[73]  H. Briegel,et al.  Entanglement purification and quantum error correction , 2007, 0705.4165.

[74]  C. J. Lobb,et al.  Spectroscopy of capacitively coupled Josephson-junction qubits , 2002, cond-mat/0210278.

[75]  Franco Nori,et al.  Controllable coupling between flux qubits. , 2006, Physical review letters.

[76]  Peng Zhang,et al.  Fast entanglement of two charge-phase qubits through nonadiabatic coupling to a large Josephson junction , 2003, cond-mat/0307043.

[77]  Franco Nori,et al.  Entanglement purification without controlled-NOT gates by using the natural dynamics of spin chains , 2008, 0802.2588.

[78]  Franco Nori,et al.  Macroscopic Einstein-Podolsky-Rosen pairs in superconducting circuits (9 pages) , 2006 .

[79]  Ting Yu Non-markovian quantum trajectories versus master equations: Finite-temperature heat bath , 2004 .

[80]  John M. Martinis,et al.  Decoherence of a superconducting qubit due to bias noise , 2003 .

[81]  C. Altafini,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.

[82]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[83]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[84]  Roberto Ramos,et al.  Entangled Macroscopic Quantum States in Two Superconducting Qubits , 2003, Science.

[85]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[86]  Andreas Buchleitner,et al.  Entanglement dynamics under decoherence: from qubits to qudits , 2005 .

[87]  Gershon Kurizki,et al.  Universal dynamical decoherence control of noisy single- and multi-qubit systems , 2007, 0704.3347.

[88]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.