Ordinal Theory for Expressiveness of Well Structured Transition Systems

To the best of our knowledge, we characterize for the first time the importance of resources (counters, channels, alphabets) when measuring expressiveness of WSTS. We establish, for usual classes of wpos, the equivalence between the existence of order reflections (nonmonotonic order embeddings) and the simulations with respect to coverability languages. We show that the non-existence of order reflections can be proved by the computation of order types. This allows us to solve some open problems and to unify the existing proofs of the WSTS classification.

[1]  Alain Finkel,et al.  A Generalization of the Procedure of Karp and Miller to Well Structured Transition Systems , 1987, ICALP.

[2]  Patricia Bouyer,et al.  Timed Petri nets and timed automata: On the discriminating power of zeno sequences , 2008, Inf. Comput..

[3]  Parosh Aziz Abdulla,et al.  Dense-Timed Petri Nets: Checking Zenoness, Token liveness and Boundedness , 2006, Log. Methods Comput. Sci..

[4]  Bernard Vauquelin,et al.  Automates a File , 1980, Theor. Comput. Sci..

[5]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[6]  Fernando Rosa-Velardo,et al.  Forward Analysis for Petri Nets with Name Creation , 2010, Petri Nets.

[7]  Fernando Rosa-Velardo,et al.  Ordinal theory for expressiveness of well-structured transition systems , 2013, Inf. Comput..

[8]  Philippe Schnoebelen,et al.  Multiply-Recursive Upper Bounds with Higman's Lemma , 2011, ICALP.

[9]  Philippe Schnoebelen,et al.  A Formal Framework for the Analysis of Recursive-Parallel Programs , 1997, PaCT.

[10]  Roland Meyer,et al.  On Boundedness in Depth in the pi-Calculus , 2008, IFIP TCS.

[11]  Jean-François Raskin,et al.  Well-structured languages , 2007, Acta Informatica.

[12]  Fernando Rosa-Velardo,et al.  Comparing Petri Data Nets and Timed Petri Nets , 2010 .

[13]  Fernando Rosa-Velardo,et al.  Accelerations for the Coverability Set of Petri Nets with Names , 2011, Fundam. Informaticae.

[14]  Barbara König,et al.  Applying the Graph Minor Theorem to the Verification of Graph Transformation Systems , 2008, CAV.

[15]  Parosh Aziz Abdulla,et al.  A classification of the expressive power of well-structured transition systems , 2011, Inf. Comput..

[16]  Fernando Rosa-Velardo,et al.  Decidability and complexity of Petri nets with unordered data , 2011, Theor. Comput. Sci..

[17]  Philippe Schnoebelen,et al.  Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma , 2010, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[18]  Parosh Aziz Abdulla,et al.  Verifying Programs with Unreliable Channels , 1996, Inf. Comput..

[19]  Alain Finkel,et al.  An Introduction to Fifo Nets-Monogeneous Nets: A Subclass of Fifo Nets , 1985, Theor. Comput. Sci..

[20]  Thomas A. Henzinger,et al.  The Observational Power of Clocks , 1994, CONCUR.

[21]  Parosh Aziz Abdulla,et al.  A Language-Based Comparison of Extensions of Petri Nets with and without Whole-Place Operations , 2009, LATA.

[22]  Fernando Rosa-Velardo,et al.  Name Creation vs. Replication in Petri Net Systems , 2008, Fundam. Informaticae.

[23]  Andreas Weiermann,et al.  A Computation of the Maximal Order Type of the Term Ordering on Finite Multisets , 2009, CiE.

[24]  Parosh Aziz Abdulla,et al.  Timed Petri Nets and BQOs , 2001, ICATPN.

[25]  Dick H. J. Jongh,et al.  Well-partial orderings and hierarchies , 1977 .

[26]  Pierre McKenzie,et al.  A well-structured framework for analysing petri net extensions , 2004, Inf. Comput..

[27]  Parosh Aziz Abdulla,et al.  Comparing the Expressive Power of Well-Structured Transition Systems , 2007, CSL.

[28]  Giorgio Delzanno,et al.  Language-Based Comparison of Petri Nets with Black Tokens, Pure Names and Ordered Data , 2010, LATA.

[29]  Joël Ouaknine,et al.  Nets with Tokens which Carry Data , 2008, Fundam. Informaticae.

[30]  Alain Finkel,et al.  Decidability of the termination problem for completely specified protocols , 1994, Distributed Computing.