Tribological Properties of a Dendrite-reinforced Ti-based Metallic Glass Matrix Composite under Different Conditions

[1]  H. J. Yang,et al.  Corrosion Behavior of Ti-Based In Situ Dendrite-Reinforced Metallic Glass Matrix Composites in Various Solutions , 2015, Metallurgical and Materials Transactions A.

[2]  Liangchi Zhang,et al.  On the estimation of interface temperature during contact sliding of bulk metallic glass , 2014 .

[3]  E. Fleury,et al.  Effect of group 5 elements on the formation and corrosion behavior of Ti-based BMG matrix composites reinforced by icosahedral quasicrystalline phase , 2014 .

[4]  L. Yong,et al.  Dry Sliding Tribological Properties of a Dendrite-reinforced Zr-based Bulk Metallic Glass Matrix Composite , 2014 .

[5]  D. Duan,et al.  Tribological properties of Zr61Ti2Cu25Al12 bulk metallic glass under simulated physiological conditions. , 2014, Materials science & engineering. C, Materials for biological applications.

[6]  J. Qiao In-situ Dendrite/Metallic Glass Matrix Composites: A Review , 2013 .

[7]  E. Fleury,et al.  Dependency of the corrosion properties of in-situ Ti-based BMG matrix composites with the volume fraction of crystalline phase , 2012 .

[8]  Z. W. Chen,et al.  Tribological properties of Ti40Zr25Ni8Cu9Be18 bulk metallic glasses under different conditions , 2011 .

[9]  E-Wen Huang,et al.  Tensile deformation micromechanisms for bulk metallic glass matrix composites: From work-hardening to softening , 2011 .

[10]  R. Hebert,et al.  Sliding wear behavior of Cu50Hf41.5Al8.5 bulk metallic glass , 2010 .

[11]  J. Schroers Processing of Bulk Metallic Glass , 2010, Advanced materials.

[12]  Qiang Ru,et al.  Effect of rotational sliding velocity on surface friction and wear behavior in Zr-based bulk metallic glass , 2010 .

[13]  P. Patsalas,et al.  Aqueous corrosion behaviour of Fe–Ni–B metal glasses , 2009 .

[14]  Jordi Sort,et al.  Yielding and intrinsic plasticity of Ti–Zr–Ni–Cu–Be bulk metallic glass , 2009 .

[15]  L. Schultz,et al.  Passivation behaviour of structurally relaxed Zr48Cu36Ag8Al8 metallic glass , 2009 .

[16]  Douglas C. Hofmann,et al.  Designing metallic glass matrix composites with high toughness and tensile ductility , 2008, Nature.

[17]  Wen‐hua Jiang,et al.  Electrochemical corrosion behavior of a Zr-based bulk-metallic glass , 2007 .

[18]  R. Yang,et al.  Ductile titanium alloy with low Poisson's ratio. , 2007, Physical review letters.

[19]  R. Raghavan,et al.  Reciprocating wear mechanisms in a Zr-based bulk metallic glass , 2007 .

[20]  L. Schultz,et al.  Pitting corrosion of zirconium-based bulk glass-matrix composites , 2006 .

[21]  R. Valiev,et al.  Nanocrystallization of amorphous Al88Y7Fe5 alloy induced by plastic deformation , 2005 .

[22]  G. Wang,et al.  Tensile fracture characteristics and deformation behavior of a Zr-based bulk metallic glass at high temperatures , 2005 .

[23]  Toshikazu Akahori,et al.  Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys , 2005 .

[24]  Weihua Wang,et al.  Bulk metallic glasses , 2004 .

[25]  D. Rigney,et al.  Sliding behavior of metallic glass: Part I. Experimental investigations , 2001 .

[26]  N. B. Demkin,et al.  Surface topography and properties of frictional contacts , 1991 .

[27]  E. Rabinowicz,et al.  Effect of abrasive particle size on wear , 1965 .

[28]  A. Shih,et al.  Sliding tribological characteristics of Zr-based bulk metallic glass , 2008 .

[29]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[30]  John I. McCool,et al.  Comparison of models for the contact of rough surfaces , 1986 .