Low‐Density Parity‐Check Codes: Design and Decoding

In this chapter, we treat code design and decoding for a family of error correction codes known as low-density parity-check (LDPC) codes. The chapter begins with an introduction to error correction in telecommunications with the focus on parity-check equations and codes defined by their parity-check matrices. To introduce the concepts behind iterative decoding, a hard-decision iterative algorithm is discussed before the soft-decision sum-product decoding algorithm is presented. Following sections focus on the relationship of graph-based representations of codes to the development of both the theoretical understanding and implementation of iterative decoders, and current methods for design of LDPC codes. The chapter concludes with the connections of LDPC codes and their decoding to other topics and likely future directions in the area. Keywords: low-density parity-check codes; error correction; iterative decoding; sum-product algorithm; min-sum algorithm; a posteriori decoding; Tanner graph; factor graph; graphical models; soft-decision decoding; message-passing decoders

[1]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[2]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[3]  A. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[4]  Sarah J. Johnson,et al.  Codes for iterative decoding from partial geometries , 2004, IEEE Transactions on Communications.

[5]  Alexander Vardy,et al.  Which codes have cycle-free Tanner graphs? , 1999, IEEE Trans. Inf. Theory.

[6]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[7]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[8]  Pascal O. Vontobel,et al.  Construction of codes based on finite generalized quadrangles for iterative decoding , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[9]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[10]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[11]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[12]  A. J. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[13]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[14]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[15]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[16]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[17]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[18]  Rudiger Urbanke,et al.  Weight distributions: how deviant can you be? , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[19]  Shu Lin,et al.  Iterative decoding of one-step majority logic deductible codes based on belief propagation , 2000, IEEE Trans. Commun..

[20]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[21]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[22]  Vladimir I. Levenshtein,et al.  Efficient reconstruction of sequences , 2001, IEEE Trans. Inf. Theory.

[23]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[24]  Brendan J. Frey,et al.  Introduction to the special issue on codes on graphs and iterative algorithms , 2001, IEEE Trans. Inf. Theory.

[25]  Marc P. C. Fossorier,et al.  Iterative reliability-based decoding of low-density parity check codes , 2001, IEEE J. Sel. Areas Commun..

[26]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[27]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[28]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.