Largest bounding box, smallest diameter, and related problems on imprecise points

Imprecision of input data is one of the main obstacles that prevent geometric algorithms from being used in practice. We model an imprecise point by a region in which the point must lie. Given a set of imprecise points, we study computing the largest and smallest possible values of various basic geometric measures on point sets, such as the diameter, width, closest pair, smallest enclosing circle, and smallest enclosing bounding box. We give efficient algorithms for most of these problems, and identify the hardness of others.

[1]  Manuel Abellanas,et al.  Structural Tolerance and Delaunay Triangulation , 1999, Inf. Process. Lett..

[2]  Bernard Chazelle,et al.  On linear-time deterministic algorithms for optimization problems in fixed dimension , 1996, SODA '93.

[3]  Henk Meijer,et al.  Optimal Nearly-Similar Polygon Stabbers of Convex Polygons , 1994, CCCG.

[4]  Maarten Löffler,et al.  Largest and Smallest Tours and Convex Hulls for Imprecise Points , 2006, SWAT.

[5]  Nimrod Megiddo,et al.  Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.

[6]  Maarten Löffler,et al.  Largest and Smallest Convex Hulls for Imprecise Points , 2010, Algorithmica.

[7]  Takayuki Nagai,et al.  Convex Hull Problem with Imprecise Input , 1998, JCDCG.

[8]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[9]  Sergio Cabello,et al.  Approximation algorithms for spreading points , 2004, J. Algorithms.

[10]  M. Shamos Problems in computational geometry , 1975 .

[11]  Azriel Rosenfeld,et al.  Fuzzy Geometry: An updated Overview , 1998, Inf. Sci..

[12]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[13]  Asish Mukhopadhyay,et al.  An Optimal Algorithm for the Intersection Radius of a Set of Convex Polygons , 1996, J. Algorithms.

[14]  David Rappaport Minimum polygon transversals of line segments , 1995, Int. J. Comput. Geom. Appl..

[15]  Nimrod Megiddo On the ball spanned by balls , 1989, Discret. Comput. Geom..

[16]  Sudebkumar Prasant Pal,et al.  A convex hull algorithm for discs, and applications , 1992 .

[17]  Maarten Löffler,et al.  Approximating largest convex hulls for imprecise points , 2008, J. Discrete Algorithms.

[18]  Godfried T. Toussaint,et al.  Computational geometry and facility location , 1990 .

[19]  David Rappaport A Convex Hull Algorithm for Discs, and Applications , 1991, Comput. Geom..

[20]  Sergey Bereg,et al.  Facility location problems with uncertainty on the plane , 2005, Discret. Optim..

[21]  D. Salesin,et al.  Constructing strongly convex approximate hulls with inaccurate primitives , 1990, Algorithmica.

[22]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[23]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[24]  Takayuki Nagai,et al.  Tight Error Bounds of Geometric Problems on Convex Objects with Imprecise Coordinates , 2000, JCDCG.

[25]  Jirí Fiala,et al.  Systems of distant representatives , 2005, Discret. Appl. Math..

[26]  Takayuki Nagai,et al.  Convex hull problem with imprecise input and its solution , 1999, Systems and Computers in Japan.