De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus)

[1]  W. Potts,et al.  The Nature of Selection on the Major Histocompatibility Complex. , 2017, Critical reviews in immunology.

[2]  Jacek Radwan,et al.  Genomic Response to Selection for Predatory Behavior in a Mammalian Model of Adaptive Radiation. , 2016, Molecular biology and evolution.

[3]  J. Radwan,et al.  amplisas: a web server for multilocus genotyping using next‐generation amplicon sequencing data , 2016, Molecular ecology resources.

[4]  Maciej Jan Ejsmond,et al.  Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC) Genes , 2015, PLoS Comput. Biol..

[5]  J. Searle,et al.  Mapping 3′ transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq , 2015, BMC Genomics.

[6]  J. Searle,et al.  Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe. , 2015, Molecular phylogenetics and evolution.

[7]  P. Bentzen,et al.  Critical review of NGS analyses for de novo genotyping multigene families , 2014, Molecular ecology.

[8]  L. Vojtek,et al.  Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole , 2014, Proceedings of the Royal Society B: Biological Sciences.

[9]  M. Feolo,et al.  HLA Diversity in the 1000 Genomes Dataset , 2014, PloS one.

[10]  Yongsheng Bai,et al.  Evaluation of de novo transcriptome assemblies from RNA-Seq data , 2014, Genome Biology.

[11]  H. Westerdahl,et al.  Positive Selection on MHC Class II DRB and DQB Genes in the Bank Vole (Myodes glareolus) , 2014, Journal of Molecular Evolution.

[12]  J. Searle,et al.  Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest a different evolutionary history from other rodents , 2014, Heredity.

[13]  W. Babik,et al.  Development, validation and high‐throughput analysis of sequence markers in nonmodel species , 2014, Molecular ecology resources.

[14]  Ruslan Kalendar,et al.  FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. , 2014, Methods in molecular biology.

[15]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[16]  C. Mazzoni,et al.  MHC genotyping of non-model organisms using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout , 2013, BMC Genomics.

[17]  Philip Hugenholtz,et al.  Shining a Light on Dark Sequencing: Characterising Errors in Ion Torrent PGM Data , 2013, PLoS Comput. Biol..

[18]  Paul D. Shaw,et al.  Using Tablet for visual exploration of second-generation sequencing data , 2013, Briefings Bioinform..

[19]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[20]  A. Vaheri,et al.  Hantavirus infections in Europe and their impact on public health , 2013, Reviews in medical virology.

[21]  P. Taberlet,et al.  Evolution of major histocompatibility complex class I and class II genes in the brown bear , 2012, BMC Evolutionary Biology.

[22]  D. Allainé,et al.  Contrasting patterns of selection acting on MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota) , 2012, Journal of evolutionary biology.

[23]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[24]  L. Gustafsson,et al.  MHC diversity, malaria and lifetime reproductive success in collared flycatchers , 2012, Molecular ecology.

[25]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[26]  T. Thomas,et al.  GemSIM: general, error-model based simulator of next-generation sequencing data , 2012, BMC Genomics.

[27]  Xuan Li,et al.  Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study , 2011, BMC Bioinformatics.

[28]  T. Mappes,et al.  Negative Frequency-Dependent Selection of Sexually Antagonistic Alleles in Myodes glareolus , 2011, Science.

[29]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[30]  L. Gustafsson,et al.  454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher , 2010, BMC Evolutionary Biology.

[31]  M. Galan,et al.  Tnf-α expression and promoter sequences reflect the balance of tolerance/resistance to Puumala hantavirus infection in European bank vole populations. , 2010, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[32]  W. Babik Methods for MHC genotyping in non‐model vertebrates , 2010, Molecular ecology resources.

[33]  Jacek Radwan,et al.  Effects of an MHC‐DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus , 2010, Molecular ecology.

[34]  W. Babik,et al.  Sequence diversity of MHC class II DRB genes in the bank voleMyodes glareolus , 2007, Acta Theriologica.

[35]  P. Taberlet,et al.  New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system , 2009, Molecular ecology resources.

[36]  James Robinson,et al.  The IMGT/HLA database , 2008, Nucleic Acids Res..

[37]  Paweł Koteja,et al.  Laboratory Model of Adaptive Radiation: A Selection Experiment in the Bank Vole , 2008, Physiological and Biochemical Zoology.

[38]  M. Galan,et al.  Association between the DQA MHC class II gene and Puumala virus infection in Myodes glareolus, the bank vole. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[39]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[40]  S. Sommer,et al.  Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus , 2007, Immunogenetics.

[41]  M. Galan,et al.  Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of the DQA MHC class II gene in voles (Arvicolinae) , 2006, Immunogenetics.

[42]  S. Bensch,et al.  Associations between malaria and MHC genes in a migratory songbird , 2005, Proceedings of the Royal Society B: Biological Sciences.

[43]  W. Wong,et al.  Bayes empirical bayes inference of amino acid sites under positive selection. , 2005, Molecular biology and evolution.

[44]  K. M. Wegner,et al.  Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the three-spined stickleback , 2004, Immunogenetics.

[45]  H. Himmelbauer,et al.  The genomic sequence and comparative analysis of the rat major histocompatibility complex. , 2004, Genome research.

[46]  R. Walford,et al.  Major histocompatibility complex class I genes of Peromyscus leucopus , 2004, Immunogenetics.

[47]  J. Trowsdale,et al.  Comparative genomics of major histocompatibility complexes , 2004, Immunogenetics.

[48]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[49]  E. Reinherz,et al.  Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. , 2003, Journal of molecular biology.

[50]  C. Landry,et al.  MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? , 2003, Journal of evolutionary biology.

[51]  Jerzy K. Kulski,et al.  Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man , 2002, Immunological Reviews.

[52]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[53]  K. Miller,et al.  Expansion and contraction of major histocompatibility complex genes: a teleostean example , 2002, Immunogenetics.

[54]  K. Jeffery,et al.  Do infectious diseases drive MHC diversity? , 2000, Microbes and infection.

[55]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[56]  Meredith Yeager,et al.  Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution , 1999, Immunological reviews.

[57]  J. York,et al.  Expressed Peromyscus maniculatus (Pema) MHC class I genes: evolutionary implications and the identification of a gene encoding a Qa1-like antigen , 1996, Immunogenetics.

[58]  M. Neshat,et al.  Transmembrane domain length variation in the evolution of major histocompatibility complex class I genes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[59]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[60]  D. R. Lee,et al.  Molecular evidence that the H-2D and H-2L genes arose by duplication. Differences between the evolution of the class I genes in mice and humans , 1990, The Journal of experimental medicine.

[61]  P. Parham,et al.  Concerted evolution of class I genes in the major histocompatibility complex of murine rodents. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Nei,et al.  Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. , 1989, Molecular biology and evolution.

[63]  M. Nei,et al.  Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. , 1989, Proceedings of the National Academy of Sciences of the United States of America.