Learning with General Proximity Measures

Proximity is the basic quality which identifies and characterizes groups of objects in various domains and contexts. When objects are compared to a set of chosen prototype examples, proximity can be used as a natural ingredient to build a numerical representation. Pattern classes may be learned from such proximity representations by the traditional nearest neighbor rule, as well as by other alternative strategies. These encode the proximity information in suitable representation vector spaces in which statistical classifiers can be trained. Such recognition techniques can be successful, provided that the measure is informative, independently whether it is metric or Euclidean, or not.

[1]  Klaus-Robert Müller,et al.  Feature Discovery in Non-Metric Pairwise Data , 2004, J. Mach. Learn. Res..

[2]  Cor J. Veenman,et al.  Turning the hyperparameter of an AUC-optimized classifier , 2005, BNAIC.

[3]  Robert P. W. Duin,et al.  A Generalized Kernel Approach to Dissimilarity-based Classification , 2002, J. Mach. Learn. Res..

[4]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[5]  R. C. Williamson,et al.  Classification on proximity data with LP-machines , 1999 .

[6]  Michael S. Lew,et al.  Principles of Visual Information Retrieval , 2001, Advances in Pattern Recognition.

[7]  Horst Bunke,et al.  On Not Making Dissimilarities Euclidean , 2004, SSPR/SPR.

[8]  Jérôme Gouzy,et al.  ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons , 2000, Nucleic Acids Res..

[9]  Horst Bunke,et al.  Non-Euclidean or Non-metric Measures Can Be Informative , 2006, SSPR/SPR.

[10]  Donato Malerba,et al.  Similarity and Dissimilarity , 2000 .

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[13]  N. JARDINE,et al.  A New Approach to Pattern Recognition , 1971, Nature.

[14]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[15]  Azriel Rosenfeld,et al.  Progress in pattern recognition , 1985 .

[16]  Robert P. W. Duin,et al.  Prototype selection for dissimilarity-based classifiers , 2006, Pattern Recognit..

[17]  Horst Bunke,et al.  Syntactic and structural pattern recognition : theory and applications , 1990 .

[18]  Joachim M. Buhmann,et al.  Going Metric: Denoising Pairwise Data , 2002, NIPS.

[19]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[20]  Daphna Weinshall,et al.  Classification with Nonmetric Distances: Image Retrieval and Class Representation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[22]  Bernard Haasdonk,et al.  Feature space interpretation of SVMs with indefinite kernels , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.