A thermodynamic adsorption/entrapment model for selenium(IV) coprecipitation with calcite

[1]  B. Schimmelpfennig,et al.  Influence of hydrogen bonding on the structure of the (001) corundum-water interface. Density functional theory calculations and Monte Carlo simulations. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[2]  F. Brandt,et al.  Solid–aqueous equilibrium in the BaSO4–RaSO4–H2O system: First-principles calculations and a thermodynamic assessment , 2013 .

[3]  Julian D. Gale,et al.  Is the Calcite–Water Interface Understood? Direct Comparisons of Molecular Dynamics Simulations with Specular X-ray Reflectivity Data , 2013 .

[4]  François Renard,et al.  Selenium incorporation into calcite and its effect on crystal growth: An atomic force microscopy study , 2013 .

[5]  L. Pastero,et al.  New Estimates of the Free Energy of Calcite/Water Interfaces for Evaluating the Equilibrium Shape and Nucleation Mechanisms , 2013 .

[6]  P. Fenter,et al.  Calcite (1 0 4)–water interface structure, revisited , 2012 .

[7]  C. Walther,et al.  The INE-Beamline for actinide science at ANKA. , 2012, The Review of scientific instruments.

[8]  J. Gale,et al.  Stable prenucleation mineral clusters are liquid-like ionic polymers , 2011, Nature communications.

[9]  François Renard,et al.  Nanostructured calcite precipitated under hydrothermal conditions in the presence of organic and inorganic selenium , 2011 .

[10]  P. Eng,et al.  Structure and reactivity of the calcite-water interface. , 2011, Journal of colloid and interface science.

[11]  N. Kivel,et al.  Preparation of radiochemically pure (79)Se and highly precise determination of its half-life. , 2010, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[12]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[13]  A. Meleshyn,et al.  Microhydration of the selenite dianion: a theoretical study of structures, hydration energies, and electronic stabilities of SeO(3)(2-)(H(2)O)(n) (n = 0-6, 9) clusters. , 2010, The journal of physical chemistry. A.

[14]  Emilio Artacho,et al.  Density, structure, and dynamics of water: the effect of van der Waals interactions. , 2010, The Journal of chemical physics.

[15]  David Quigley,et al.  Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution : a new model for the calcite-water interface , 2010 .

[16]  L. Charlet,et al.  Structural study of selenium(IV) substitutions in calcite , 2010 .

[17]  A. Stack,et al.  Growth Rate of Calcite Steps As a Function of Aqueous Calcium-to-Carbonate Ratio: Independent Attachment and Detachment of Calcium and Carbonate Ions , 2010 .

[18]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[19]  L. Charlet,et al.  Selenium environmental cycling and bioavailability: a structural chemist point of view , 2009 .

[20]  D. Bosbach,et al.  Neptunium(V) coprecipitation with calcite. , 2008, Environmental science & technology.

[21]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[22]  A. Rohl,et al.  An efficient technique for the prediction of solvent-dependent morphology: the COSMIC method , 2007 .

[23]  M. Wildner,et al.  Crystal structures of SrSeO 3 and CaSeO 3 and their respective relationships with molybdomenite- and monazite-type compounds – an example for stereochemical equivalence of E SeO 3 groups ( E = lone electron pair) with tetrahedral TO 4 groups , 2007 .

[24]  A. Shtukenberg,et al.  Crystallization kinetics in binary solid solution–aqueous solution systems , 2006, American Journal of Science.

[25]  R. Reeder,et al.  The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface: An X-ray absorption spectroscopy study , 2006 .

[26]  R. Reeder,et al.  The influence of pH on the kinetics, reversibility and mechanisms of Pb(II) sorption at the calcite-water interface , 2005 .

[27]  Zhigang Wu,et al.  More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.

[28]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[29]  E. Watson,et al.  A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals , 2004 .

[30]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[31]  J. M. Astilleros,et al.  Supersaturation functions in binary solid solution–aqueous solution systems , 2003 .

[32]  F. J. Pearson,et al.  Nagra/PSI Chemical Thermodynamic Data Base 01/01 , 2002 .

[33]  Y. Kawazoe,et al.  Prediction of the mixing enthalpy of alloys , 2002 .

[34]  Yifeng Wang,et al.  Prediction of trace metal partitioning between minerals and aqueous solutions: a linear free energy correlation approach , 2001 .

[35]  G. Ionova,et al.  Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions , 2001 .

[36]  R. Reeder,et al.  Uranyl Incorporation into Calcite and Aragonite: XAFS and Luminescence Studies , 2000 .

[37]  D. Chateigner,et al.  Sorption of metal ions on clay minerals. I. Polarized EXAFS evidence for the adsorption of Co on the edges of hectorite particles , 1999 .

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  M. Bedzyk,et al.  X-ray standing wave investigation of the surface structure of selenite anions adsorbed on calcite , 1997 .

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[42]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[43]  J. Pankow,et al.  Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite , 1996 .

[44]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[45]  A. Mucci,et al.  Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 atm, and high dissolved REE concentrations , 1995 .

[46]  P. Blöchl Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[47]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[48]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[49]  D. L. Blanchard,et al.  The interactions of Co, Mn and water with calcite surfaces , 1992 .

[50]  M. Hochella,et al.  Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) , 1991 .

[51]  C. E. Cowan,et al.  Solution ion effects on the surface exchange of selenite on calcite , 1990 .

[52]  Takeshi Ogino,et al.  The formation and transformation mechanism of calcium carbonate in water , 1987 .

[53]  A. E. Nielsen,et al.  Electrolyte crystal growth kinetics , 1984 .

[54]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[55]  S. C. Lind,et al.  Die fraktionierte Fällung von Barium- und Radiumchromaten , 1928 .

[56]  M. Prieto Thermodynamics of Solid Solution-Aqueous Solution Systems , 2009 .

[57]  L. Öhman,et al.  Chemical thermodynamics of selenium , 2005 .

[58]  Xiangke Wang,et al.  Sorption and desorption of radioselenium on calcareous soil and its solid components studied by batch and column experiments. , 2005, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[59]  Pierre D. Glynn,et al.  Solid-solution solubilities and thermodynamics: Sulfates, carbonates and halides , 2000 .

[60]  S. Carroll,et al.  Interactions of U(VI), Nd, and Th(IV) at the Calcite-Solution Interface , 1992 .

[61]  Yizhak Marcus,et al.  Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K , 1991 .

[62]  R. Delaune,et al.  Transformations of selenium as affected by sediment oxidation-reduction potential and pH. , 1990 .

[63]  Universities of Leeds, Sheffield and York , 2022 .