CMOS Compatible Midinfrared Wavelength-Selective Thermopile for High Temperature Applications

In this paper, the design, fabrication, and testing of a CMOS compatible mid-infrared (mid-IR) thermopile sensor comprising a stacked double layer thermopile and an interferometric absorber is reported. The devices are all fabricated in CMOS compatible process. The length and width of the thermocouple are 600 and 12 μm, respectively. One thermopile consists of 96 thermocouple pairs. The thickness of the poly-Si strips is 300 nm and the thickness of the SiO<sub>2</sub> electrical isolation layer is 150 nm. The interferometric absorber is formed by a stacked three layer of 7-nm TiN, 250-nm amorphous silicon, and 300-nm Al. The measurement using blackbody with temperature of 470 °C was conducted at ambient temperature from -50 °C to 300 °C. The results show that the responsivity and the detectivity of this thermopile mid-IR sensor vary from 130 to 463 V/W and 3.8 · 106 cm · Hz<sup>1/2</sup> · W<sup>-1</sup> to 1.3 · 107 cm · Hz<sup>1/2</sup> · W<sup>-1</sup>, respectively. And the time constant of the mid-IR sensor is 33 ms. The maximum output voltage is measured at 190 °C, where the responsivity and the detectivity are 425.7 V/W and 1.25 · 107 cm · Hz<sup>1/2</sup> · W<sup>-1</sup>, respectively.

[1]  Pasqualina M. Sarro,et al.  A surface micromachined thermopile detector array with an interference-based absorber , 2011 .

[2]  K. C. Liddiard,et al.  Application of interferometric enhancement to self-absorbing thin film thermal IR detectors , 1993 .

[3]  K. Bertilsson,et al.  Experimental Evaluation of a Thermopile Detector With SU-8 Membrane in a Carbon Dioxide Meter Setup , 2009, IEEE Sensors Journal.

[4]  Christian Menolfi,et al.  Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array , 2001 .

[6]  Yong-Jun Kim,et al.  A flexible tactile sensor based on a thermoelectric device for simultaneous detection of contact heat and contact force , 2010 .

[7]  Hans-Erik Nilsson,et al.  Thermal simulation and design optimization of a thermopile infrared detector with an SU-8 membrane , 2009 .

[8]  L. J. V. D. Pauw A METHOD OF MEASURING SPECIFIC RESISTIVITY AND HALL EFFECT OF DISCS OF ARBITRARY SHAPE , 1991 .

[9]  F. Mancarella,et al.  CMOS-compatible fabrication of thermopiles with high sensitivity in the 3–5 μm atmospheric window , 2007 .

[10]  R. V. Herzen,et al.  25. DOWNHOLE TEMPERATURE AND SHIPBOARD THERMAL CONDUCTIVITY MEASUREMENTS ABOARD D/V GLOMAR CHALLENGER IN THE RED SEA , 2007 .

[11]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[12]  Chengkuo Lee,et al.  Microstructures for characterization of seebeck coefficient of doped polysilicon films , 2011 .

[13]  3D thermoelectric structures derived from a new mixed micromachining process , 2000, Digest of Papers Microprocesses and Nanotechnology 2000. 2000 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.00EX387).

[14]  Ke Xu,et al.  Size‐Dependent Transport and Thermoelectric Properties of Individual Polycrystalline Bismuth Nanowires , 2006 .

[15]  Yuelin Wang,et al.  Micromachined Thermopile IR Detector Module With High Performance , 2011, IEEE Photonics Technology Letters.

[16]  N. Nenadovic,et al.  Bulk-Micromachined Test Structure for Fast and Reliable Determination of the Lateral Thermal Conductivity of Thin Films , 2007, Journal of Microelectromechanical Systems.

[17]  Chengkuo Lee,et al.  Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators , 2009 .

[18]  Hans-Erik Nilsson,et al.  Design of a Micromachined Thermopile Infrared Sensor With a Self-Supported Membrane , 2008 .

[19]  Indirect wavelength selective infrared emitter using surface plasmon polariton , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[20]  P. Sarro Integrated silicon thermopile infrared detectors , 1987 .

[21]  Tie Li,et al.  Robust Array-Composite Micromachined Thermopile IR Detector by CMOS Technology , 2011, IEEE Electron Device Letters.

[22]  A. Roche,et al.  Organic Chemistry: , 1982, Nature.

[23]  Chengkuo Lee,et al.  Characterization of Thermopile Based on Complementary Metal-Oxide-Semiconductor (CMOS) Materials and Post CMOS Micromachining , 2002 .

[24]  Brian C. Sales,et al.  Thermoelectric Materials: New Approaches to an Old Problem , 1997 .

[25]  Chengkuo Lee,et al.  Design, Fabrication, and Characterization of CMOS MEMS-Based Thermoelectric Power Generators , 2010, Journal of Microelectromechanical Systems.

[26]  C. Van Hoof,et al.  Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes , 2007, IEEE Sensors Journal.

[27]  Dehui Xu,et al.  A CMOS Compatible Micromachined Thermopile IR Sensor with High Sensitivity , 2010 .

[28]  N. Neumann,et al.  Tunable infrared detector with integrated micromachined Fabry-Perot filter , 2008 .

[29]  T. Akın,et al.  A Low-Cost 128 $\times$ 128 Uncooled Infrared Detector Array in CMOS Process , 2008, Journal of Microelectromechanical Systems.

[30]  Chris Van Hoof,et al.  Characterization and optimization of polycrystalline Si70%Ge30% for surface micromachined thermopiles in human body applications , 2009 .

[31]  R. Lenggenhager,et al.  CMOS thermoelectric infrared sensors , 1994 .

[32]  Seong-Ho Kong,et al.  Spectral performance of a micromachined infrared spectrum analyzer in silicon , 2005, IEEE Transactions on Instrumentation and Measurement.

[33]  E. Schwyter,et al.  $\hbox{Bi}_{2}\hbox{Te}_{3}$-Based Flexible Micro Thermoelectric Generator With Optimized Design , 2009, Journal of Microelectromechanical Systems.

[34]  Min-gu Kim,et al.  An electrodynamic preconcentrator integrated thermoelectric biosensor chip for continuous monitoring of biochemical process , 2012 .

[36]  Chris Van Hoof,et al.  Realization of a wearable miniaturized thermoelectric generator for human body applications , 2009 .

[37]  R. A. Wood,et al.  Uncooled thermal imaging with monolithic silicon focal planes , 1993, Optics & Photonics.

[38]  H. Nilsson,et al.  Fabrication and characterization of a design optimized SU-8 thermopile with enhanced sensitivity , 2009 .

[39]  A. Rogalski Infrared detectors: status and trends , 2003 .

[40]  H. Nilsson,et al.  Design of a Micromachined Thermopile Infrared Sensor With a Self-Supported ${\rm SiO}_{2}/{\rm SU}{-}8$ Membrane , 2008, IEEE Sensors Journal.

[41]  Chengkuo Lee,et al.  Development of a thermopile infrared sensor using stacked double polycrystalline silicon layers based on the CMOS process , 2013 .

[42]  Mahmoud Almasri,et al.  Uncooled multimirror broad-band infrared microbolometers , 2002 .

[43]  R. Wolffenbuttel Silicon micromachining for integrated radiant sensors , 1992 .

[44]  Dehui Xu,et al.  Modeling of Front-Etched Micromachined Thermopile IR Detector by CMOS Technology , 2010, Journal of Microelectromechanical Systems.

[45]  Chengkuo Lee,et al.  Optimization criteria of CMOS-compatible thermopile sensors , 1999, Smart Materials, Nano-, and Micro- Smart Systems.

[46]  P. Kruse,et al.  Integrated uncooled infrared detector imaging arrays , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[47]  O. Paul,et al.  Process-dependent thin-film thermal conductivities for thermal CMOS MEMS , 2000, Journal of Microelectromechanical Systems.

[48]  H. Yousef,et al.  Vertical Thermopiles Embedded in a Polyimide-Based Flexible Printed Circuit Board , 2007, Journal of Microelectromechanical Systems.

[49]  Yuelin Wang,et al.  Uncooled Thermoelectric Infrared Sensor With Advanced Micromachining , 2012, IEEE Sensors Journal.