Self-Enhancing H2 Evolution from TiO2 Nanostructures under Illumination.
暂无分享,去创建一个
P. Schmuki | Xuemei Zhou | Ning Liu | K. Meyer | E. Wierzbicka | N. Denisov | D. Fehn | JeongEun Yoo
[1] A. Naldoni,et al. Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production , 2018, ACS catalysis.
[2] K. Kimoto,et al. Homogeneous Electron Doping into Nonstoichiometric Strontium Titanate Improves Its Photocatalytic Activity for Hydrogen and Oxygen Evolution , 2018, ACS Catalysis.
[3] R. Zbořil,et al. Semimetallic core-shell TiO2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO2 supercapacitors , 2017 .
[4] P. Schmuki,et al. Photoelectrochemical H2 Generation from Suboxide TiO2 Nanotubes: Visible-Light Absorption versus Conductivity. , 2017, Chemistry.
[5] W. Peukert,et al. Noble‐Metal‐Free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH2 , 2017, Advanced materials.
[6] P. Schmuki,et al. Black Magic in Gray Titania: Noble-Metal-Free Photocatalytic H2 Evolution from Hydrogenated Anatase. , 2017, ChemSusChem.
[7] M. Hartmann,et al. Hydrogenated anatase: strong photocatalytic dihydrogen evolution without the use of a co-catalyst. , 2014, Angewandte Chemie.
[8] Y. Horiuchi,et al. Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.
[9] P. Schmuki,et al. One-dimensional titanium dioxide nanomaterials: nanotubes. , 2014, Chemical reviews.
[10] H. Fu,et al. Ordered mesoporous black TiO(2) as highly efficient hydrogen evolution photocatalyst. , 2014, Journal of the American Chemical Society.
[11] A. Selloni,et al. Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. , 2014, Chemical reviews.
[12] M. Hartmann,et al. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. , 2014, Nano letters.
[13] K. Maeda,et al. Dependence of Activity of Rutile Titanium(IV) Oxide Powder for Photocatalytic Overall Water Splitting on Structural Properties , 2014 .
[14] H. Idriss,et al. Photoreaction of Au/TiO2 for hydrogen production from renewables: a review on the synergistic effect between anatase and rutile phases of TiO2 , 2012, Materials for Renewable and Sustainable Energy.
[15] M. Marelli,et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.
[16] Patrik Schmuki,et al. TiO2‐Nanoröhren: Synthese und Anwendungen , 2011 .
[17] Patrik Schmuki,et al. TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.
[18] Xiaobo Chen,et al. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.
[19] Kaixue Wang,et al. Light-induced formation of porous TiO2 with superior electron-storing capacity. , 2010, Chemical communications.
[20] B. Hameed,et al. The advancements in sol–gel method of doped-TiO2 photocatalysts , 2010 .
[21] A. Fujishima,et al. TiO2 photocatalysis and related surface phenomena , 2008 .
[22] K. Sumathy,et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .
[23] O. Dulub,et al. THE RELATIONSHIP BETWEEN BULK AND SURFACE PROPERTIES OF RUTILE TiO2(110) , 2000 .
[24] Akira Fujishima,et al. Titanium dioxide photocatalysis , 2000 .
[25] J. Yates,et al. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .
[26] A. Fujishima,et al. Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.
[27] C. Renz. Lichtreaktionen der Oxyde des Titans, Cers und der Erdsäuren , 1921 .