Carbon nanotube-based nonvolatile random access memory for molecular computing

A concept for molecular electronics exploiting carbon nanotubes as both molecular device elements and molecular wires for reading and writing information was developed. Each device element is based on a suspended, crossed nanotube geometry that leads to bistable, electrostatically switchable ON/OFF states. The device elements are naturally addressable in large arrays by the carbon nanotube molecular wires making up the devices. These reversible, bistable device elements could be used to construct nonvolatile random access memory and logic function tables at an integration level approaching 10(12) elements per square centimeter and an element operation frequency in excess of 100 gigahertz. The viability of this concept is demonstrated by detailed calculations and by the experimental realization of a reversible, bistable nanotube-based bit.

[1]  Carlos Alberto Brebbia,et al.  The Boundary Element Method for Engineers , 1978 .

[2]  李幼升,et al.  Ph , 1989 .

[3]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[4]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[5]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[6]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[7]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[8]  D. Tománek,et al.  Field-induced unraveling of carbon nanotubes , 1997 .

[9]  J. Gimzewski,et al.  An electromechanical amplifier using a single molecule , 1997 .

[10]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[11]  Christoph Strunk,et al.  Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements , 1998 .

[12]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[13]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[14]  M. Nardelli,et al.  Brittle and Ductile Behavior in Carbon Nanotubes , 1998 .

[15]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[16]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[17]  Kenneth A. Smith,et al.  Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates , 1999 .

[18]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[19]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[20]  P Kim,et al.  ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[21]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[22]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[23]  Alan R. Burns,et al.  Molecular Level Friction As Revealed with a Novel Scanning Probe , 1999 .

[24]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[25]  Xie Hong-kun,et al.  Nature of Science , 2002 .