Machine-learning non-stationary noise out of gravitational wave detectors

Signal extraction out of background noise is a common challenge in high-precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal-to-noise ratio of the detection, witness sensors are often used to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is nonstationary, linear techniques often fail or are suboptimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove nonstationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational-wave observatory, where we could obtain an improvement of the detector gravitational-wave reach without introducing any bias on the source parameter estimation.

[1]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[2]  Y. Arai,et al.  KAGRA: 2.5 generation interferometric gravitational wave detector , 2018, Nature Astronomy.

[3]  D. Davis,et al.  Improving the sensitivity of Advanced LIGO using noise subtraction , 2018, Classical and Quantum Gravity.

[4]  P. J. King,et al.  Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO , 2018, Physical Review D.

[5]  Y. Wang,et al.  Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run , 2017, 1710.02185.

[6]  Michael Boyle,et al.  Numerical relativity waveform surrogate model for generically precessing binary black hole mergers , 2017, 1705.07089.

[7]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[8]  Y. Wang,et al.  Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 , 2016, 1602.03845.

[9]  Gainesville,et al.  The Advanced LIGO photon calibrators. , 2016, The Review of scientific instruments.

[10]  R. Bork,et al.  Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy , 2016, 1604.00439.

[11]  Matthew West,et al.  The PyCBC search for gravitational waves from compact binary coalescence , 2015, 1508.02357.

[12]  Neil J. Cornish,et al.  Bayesian inference for spectral estimation of gravitational wave detector noise , 2014, 1410.3852.

[13]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[14]  The Ligo Scientific Collaboration Advanced LIGO , 2014, 1411.4547.

[15]  R. Schofield,et al.  Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.

[16]  Yoshua Bengio,et al.  On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.

[17]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[18]  Frank Ohme,et al.  Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.

[19]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[20]  Lisa Barsotti,et al.  Angular control of optical cavities in a radiation-pressure-dominated regime: the Enhanced LIGO case. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  F. Khalili,et al.  Quantum Measurement Theory in Gravitational-Wave Detectors , 2012, Living Reviews in Relativity.

[22]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[23]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[24]  R. Cooke Real and Complex Analysis , 2011 .

[25]  Lisa Barsotti,et al.  Alignment sensing and control in advanced LIGO , 2010 .

[26]  V. Moscatelli,et al.  Performances of the Virgo interferometer longitudinal control system , 2010 .

[27]  R. Firoozian Feedback Control Theory , 2009 .

[28]  D. Sigg,et al.  Optical torques in suspended Fabry Perot interferometers , 2006 .

[29]  T.E. Tuncer Causal and stable FIR-IIR Wiener filters , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[30]  M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[31]  N. Mavalvala,et al.  Readout and control of a power-recycled interferometric gravitational-wave antenna. , 2001, Applied optics.

[32]  Bernard F. Schutz,et al.  The GEO 600 gravitational wave detector , 2002 .

[33]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[34]  K. Thorne,et al.  Seismic gravity-gradient noise in interferometric gravitational-wave detectors , 1998, gr-qc/9806018.

[35]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[36]  Sanjit K. Mitra,et al.  Digital Signal Processing: A Computer-Based Approach , 1997 .

[37]  A. Rüdiger,et al.  Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors , 1993 .

[38]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[39]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[40]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[41]  C. Helstrom,et al.  Statistical theory of signal detection , 1968 .

[42]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[43]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .