Calibration of optical traps by dual trapping of one bead.

We introduce a method for optical trap calibration that is suitable for viscoelastic material. The method is designed for use on experimental setups with two optical tweezers and is based on pulling a trapped particle with one trap while holding it with the other. No piezo stage is needed, and only one optical trap must be movable with galvo mirrors, piezo mirrors, or acousto-optical deflectors. The method combines advantages of commonly known PSD-fitting and fast-sweeping methods, allowing calibration of a completely fixed trap in a fluid of unknown viscosity/viscoelasticity. A detailed method description, a theoretical derivation, and an experimental comparison to other methods are reported.

[1]  E. Florin,et al.  Direct observation of nondiffusive motion of a Brownian particle. , 2005, Physical review letters.

[2]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[3]  P. Doyle,et al.  Static and dynamic errors in particle tracking microrheology. , 2005, Biophysical journal.

[4]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[5]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[6]  E. Furst,et al.  Calibration of an optical tweezer microrheometer by sequential impulse response , 2013, Rheologica Acta.

[7]  P. Bartlett,et al.  Colloidal dynamics in polymer solutions: optical two-point microrheology measurements. , 2002, Faraday discussions.

[8]  Christoph F. Schmidt,et al.  Calibrating bead displacements in optical tweezers using acousto-optic deflectors , 2006 .

[9]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[10]  F. C. MacKintosh,et al.  Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Networks from Thermal Fluctuations , 1997 .

[11]  Y. Kimura Microrheology of Soft matter , 2009 .

[12]  F. C. MacKintosh,et al.  Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations , 1997 .

[13]  Andrés Córdoba,et al.  The effects of compressibility, hydrodynamic interaction and inertia on two-point, passive microrheology of viscoelastic materials , 2013 .

[14]  A. Woźniak,et al.  Single-molecule force spectroscopy using the NanoTracker optical tweezers platform: from design to application. , 2009, Current pharmaceutical biotechnology.

[15]  S. Chu,et al.  Quantitative measurements of force and displacement using an optical trap. , 1996, Biophysical journal.

[16]  Characterizing quantitative measurements of force and displacement with optical tweezers on the NanoTrackerTM , 2014 .

[17]  C. Dekker,et al.  Homologous recombination in real time: DNA strand exchange by RecA. , 2008, Molecular cell.

[18]  F. MacKintosh,et al.  Nonequilibrium Mechanics of Active Cytoskeletal Networks , 2007, Science.

[19]  C. Tanford Macromolecules , 1994, Nature.

[20]  Gijs J. L. Wuite,et al.  Counting RAD51 proteins disassembling from nucleoprotein filaments under tension , 2008, Nature.

[21]  F. MacKintosh,et al.  High-frequency stress relaxation in semiflexible polymer solutions and networks. , 2006, Physical review letters.

[22]  William H. Press,et al.  Numerical recipes , 1990 .

[23]  Miriam W. Allersma,et al.  Two-dimensional tracking of ncd motility by back focal plane interferometry. , 1998, Biophysical journal.

[24]  P. Prasad,et al.  Measurement of optical trapping forces by use of the two-photon-excited fluorescence of microspheres. , 2003, Optics letters.

[25]  S. Block,et al.  Versatile optical traps with feedback control. , 1998, Methods in enzymology.

[26]  Mario Fischer,et al.  Calibration of trapping force and response function of optical tweezers in viscoelastic media , 2007 .