One brick at a time:a survey of inductive constructions in rigidity theory

We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and body-bar frameworks. As the survey progresses we describe the key open problems related to inductions.

[1]  Shin-ichi Tanigawa,et al.  Periodic body-and-bar frameworks , 2011, SoCG '12.

[2]  Walter Whiteley,et al.  Isostatic Block and Hole Frameworks , 2010, SIAM J. Discret. Math..

[3]  Tibor Jordán,et al.  A proof of Connelly's conjecture on 3-connected circuits of the rigidity matroid , 2003, J. Comb. Theory, Ser. B.

[4]  Bernd Schulze,et al.  Symmetric Laman Theorems for the Groups C2 and Cs , 2010, Electron. J. Comb..

[5]  Edward A. Bender,et al.  Asymptotics of Some Convolutional Recurrences , 2010, Electron. J. Comb..

[6]  Anthony Nixon,et al.  Rigidity of Frameworks Supported on Surfaces , 2010, SIAM J. Discret. Math..

[7]  Louis Theran,et al.  Frameworks with Forced Symmetry I: Reflections and Rotations , 2013, Discret. Comput. Geom..

[8]  Tibor Jordán,et al.  Gain-Sparsity and Symmetry-Forced Rigidity in the Plane , 2016, Discret. Comput. Geom..

[9]  Bernd Schulze,et al.  Symmetric Versions of Laman’s Theorem , 2009, Discret. Comput. Geom..

[10]  Walter Whiteley,et al.  Some matroids from discrete applied geometry , 1996 .

[11]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Connected Rigidity Matroids and Unique Realizations of Graphs Connected Rigidity Matroids and Unique Realizations of Graphs , 2022 .

[12]  Anthony Nixon,et al.  A constructive characterisation of circuits in the simple (2,1)‐sparse matroid , 2012, Eur. J. Comb..

[13]  Robert Connelly,et al.  Generic Global Rigidity , 2005, Discret. Comput. Geom..

[14]  Brigitte Servatius,et al.  On the 2-sum in rigidity matroids , 2011, Eur. J. Comb..

[15]  Ileana Streinu,et al.  Parallel-Redrawing Mechanisms, Pseudo-Triangulations and Kinetic Planar Graphs , 2005, GD.

[16]  W. Whiteley,et al.  Generating Isostatic Frameworks , 1985 .

[17]  Shin-ichi Tanigawa,et al.  A Proof of the Molecular Conjecture , 2011, Discret. Comput. Geom..

[18]  Walter Whiteley,et al.  Constraining Plane Configurations in Computer-Aided Design: Combinatorics of Directions and Lengths , 1999, SIAM J. Discret. Math..

[19]  Francisco Santos,et al.  Pseudo-Triangulations - a Survey , 2006 .

[20]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[21]  Lebrecht Henneberg,et al.  Die graphische Statik der Starren Systeme , 1911 .

[22]  Louis Theran,et al.  Generic rigidity of frameworks with orientation-preserving crystallographic symmetry , 2011 .

[23]  Ileana Streinu,et al.  Minimally rigid periodic graphs , 2011 .

[24]  Walter Whiteley,et al.  Rigidity and scene analysis , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[25]  Audrey Lee-St. John,et al.  Pebble game algorithms and sparse graphs , 2007, Discret. Math..

[26]  Bill Jackson,et al.  The number of equivalent realisations of a rigid graph , 2012, 1204.1228.

[27]  Anthony Nixon,et al.  A LAMAN THEOREM FOR FRAMEWORKS ON SURFACES OF REVOLUTION , 2013 .

[28]  S D Guest,et al.  Rigidity of periodic and symmetric structures in nature and engineering , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Tiong-Seng Tay,et al.  Rigidity of multi-graphs. I. Linking rigid bodies in n-space , 1984, J. Comb. Theory, Ser. B.

[30]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[31]  Bill Jackson,et al.  Globally rigid circuits of the direction-length rigidity matroid , 2010, J. Comb. Theory, Ser. B.

[32]  Tibor Jordán,et al.  Generic global rigidity of body-bar frameworks , 2013, J. Comb. Theory B.

[33]  Stefan Funke,et al.  Curve reconstruction from noisy samples , 2003, SCG '03.

[34]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[35]  Zsolt Fekete,et al.  A Note on [k, l]-sparse Graphs , 2006 .

[36]  Vincent Pilaud,et al.  Multitriangulations as Complexes of Star Polygons , 2007, Discret. Comput. Geom..

[37]  T. Tay On the Generic Rigidity of Bar-Frameworks , 1999 .

[38]  Tibor Jordán,et al.  Egerváry Research Group on Combinatorial Optimization Operations Preserving the Global Rigidity of Graphs and Frameworks in the Plane Operations Preserving the Global Rigidity of Graphs and Frameworks in the Plane , 2022 .

[39]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[40]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[41]  András Frank,et al.  Egerváry Research Group on Combinatorial Optimization Constructive Characterizations for Packing and Covering with Trees Constructive Characterizations for Packing and Covering with Trees , 2022 .

[42]  Anthony Nixon,et al.  An inductive construction of (2, 1)-tight graphs , 2011, Contributions Discret. Math..

[43]  A. Recski Matroid theory and its applications in electric network theory and in statics , 1989 .

[44]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Globally Linked Pairs of Vertices in Equivalent Realizations of Graphs Globally Linked Pairs of Vertices in Equivalent Realizations of Graphs , 2022 .

[45]  Anthony Nixon,et al.  Periodic Rigidity on a Variable Torus Using Inductive Constructions , 2012, Electron. J. Comb..

[46]  Ileana Streinu,et al.  The Number of Embeddings of Minimally Rigid Graphs , 2004, Discret. Comput. Geom..

[47]  Elissa Ross The rigidity of periodic body–bar frameworks on the three-dimensional fixed torus , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  Günter Rote,et al.  Planar minimally rigid graphs and pseudo-triangulations , 2005, Comput. Geom..

[49]  R. Pollack,et al.  Surveys on discrete and computational geometry : twenty years later : AMS-IMS-SIAM Joint Summer Research Conference, June 18-22, 2006, Snowbird, Utah , 2008 .

[50]  Ciprian S. Borcea,et al.  Periodic frameworks and flexibility , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  Tiong-Seng Tay,et al.  Henneberg's Method for Bar and Body Frameworks , 1991 .

[52]  Louis Theran,et al.  Generic combinatorial rigidity of periodic frameworks , 2010, 1008.1837.

[53]  Walter Whiteley,et al.  Vertex Splitting in Isostatic Frameworks , 1990 .

[54]  Bill Jackson,et al.  Graph theoretic techniques in the analysis of uniquely localizable sensor networks , 2009 .

[55]  B. Roth,et al.  The rigidity of graphs , 1978 .