A Distance-Based Locally Informed Particle Swarm Model for Multimodal Optimization

Multimodal optimization amounts to finding multiple global and local optima (as opposed to a single solution) of a function, so that the user can have a better knowledge about different optimal solutions in the search space and when needed, the current solution may be switched to a more suitable one while still maintaining the optimal system performance. Niching particle swarm optimizers (PSOs) have been widely used by the evolutionary computation community for solving real-parameter multimodal optimization problems. However, most of the existing PSO-based niching algorithms are difficult to use in practice because of their poor local search ability and requirement of prior knowledge to specify certain niching parameters. This paper has addressed these issues by proposing a distance-based locally informed particle swarm (LIPS) optimizer, which eliminates the need to specify any niching parameter and enhance the fine search ability of PSO. Instead of using the global best particle, LIPS uses several local bests to guide the search of each particle. LIPS can operate as a stable niching algorithm by using the information provided by its neighborhoods. The neighborhoods are estimated in terms of Euclidean distance. The algorithm is compared with a number of state-of-the-art evolutionary multimodal optimizers on 30 commonly used multimodal benchmark functions. The experimental results suggest that the proposed technique is able to provide statistically superior and more consistent performance over the existing niching algorithms on the test functions, without incurring any severe computational burdens.

[1]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[2]  Xiaodong Li,et al.  Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology , 2010, IEEE Transactions on Evolutionary Computation.

[3]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[4]  R. K. Ursem Multinational evolutionary algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  R. Brits,et al.  Solving systems of unconstrained equations using particle swarm optimization , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[6]  Kevin Warwick,et al.  A Variable Radius Niching Technique for Speciation in Genetic Algorithms , 2000, GECCO.

[7]  Shengxiang Yang,et al.  Particle Swarm Optimization With Composite Particles in Dynamic Environments , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[9]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[10]  Xiaodong Li,et al.  Erratum to "Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology" [Feb 10 150-169] , 2010, IEEE Trans. Evol. Comput..

[11]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[12]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[13]  Michael N. Vrahatis,et al.  Modification of the Particle Swarm Optimizer for Locating All the Global Minima , 2001 .

[14]  Xiaodong Li,et al.  Efficient differential evolution using speciation for multimodal function optimization , 2005, GECCO '05.

[15]  Tim Hendtlass The Particle Swarm Algorithm , 2008, Computational Intelligence: A Compendium.

[16]  Moncef Gabbouj,et al.  Fractional Particle Swarm Optimization in Multidimensional Search Space , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  Ponnuthurai N. Suganthan,et al.  Novel multimodal problems and differential evolution with ensemble of restricted tournament selection , 2010, IEEE Congress on Evolutionary Computation.

[18]  Dumitru Dumitrescu,et al.  Multimodal Optimization by Means of a Topological Species Conservation Algorithm , 2010, IEEE Transactions on Evolutionary Computation.

[19]  Russell C. Eberhart,et al.  Population diversity of particle swarms , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[20]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[21]  Xiaodong Li,et al.  A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio , 2007, GECCO '07.

[22]  David E. Goldberg,et al.  Probabilistic Crowding: Deterministic Crowding with Probabilistic Replacement , 1999 .

[23]  Nguyen Xuan Hoai,et al.  Initialising PSO with randomised low-discrepancy sequences: the comparative results , 2007, 2007 IEEE Congress on Evolutionary Computation.

[24]  K. Parsopoulos,et al.  Stretching technique for obtaining global minimizers through Particle Swarm Optimization , 2001 .

[25]  Samir W. Mahfoud A Comparison of Parallel and Sequential Niching Methods , 1995, ICGA.

[26]  Russell C. Eberhart,et al.  Monitoring of particle swarm optimization , 2009, Frontiers of Computer Science in China.

[27]  P. John Clarkson,et al.  A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2002, Evolutionary Computation.

[28]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[29]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[30]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[31]  Tim Hendtlass Fitness estimation and the particle swarm optimisation algorithm , 2007, 2007 IEEE Congress on Evolutionary Computation.

[32]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[33]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[34]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[35]  Ofer M. Shir,et al.  Adaptive Niche Radii and Niche Shapes Approaches for Niching with the CMA-ES , 2010, Evolutionary Computation.

[36]  Leandro dos Santos Coelho,et al.  Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[37]  René Thomsen,et al.  Multimodal optimization using crowding-based differential evolution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[38]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[39]  Tim Hendtlass,et al.  Particle Swarm Optimisation and high dimensional problem spaces , 2009, 2009 IEEE Congress on Evolutionary Computation.

[40]  Gary G. Yen,et al.  Cultural-Based Multiobjective Particle Swarm Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[41]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[42]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[43]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[44]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[45]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[46]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[47]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[48]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[49]  Javier E. Vitela,et al.  A real-coded niching memetic algorithm for continuous multimodal function optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).